To improve efficiency and classification accuracy, and overcome the issue of poor generalization performance of traditional fabric defect classification methods, we present a new fabric defect classification algorithm with evolving Inception v3 by improved L2,1-norm regularized extreme learning machine. Herein, first, the features of fabric images are extracted using Inception v3, which reduces the amount of computation and improves the accuracy of feature extraction. Second, an L2,1-norm regularization extreme learning machine algorithm based on multi-verse optimizer–Henry gas solubility optimization, called MHL21-RELM, is proposed. The proposed algorithm solves the problems of the low classification accuracy of the traditional ELM and prevents the algorithm from easily falling into the local optimal solution. Next, instead of SoftMax, MHL21-RELM is used as the classification network layer of Inception V3, and a new fabric defect classification algorithm named Inv3-MHL21-RELM is proposed to enhance the fabric defect classification performance. Finally, the performance of our algorithm is verified by experiments on different fabric defect datasets. The proposed method achieves 97.29% classification accuracy with the Textile Texture Database; it achieves a 6–30% improvement in classification accuracy compared with other traditional fabric defect classification methods, thus effectively improving the classification accuracy of fabric defects. In addition, this method achieves good classification results with different types of fabric defect datasets, thereby showing strong generalization.
To solve the problems of slow convergence speed, poor robustness, and complex calculation of image Jacobian matrix in image-based visual servo system, a hybrid regression model based on multiple adaptive regression spline and online sequential extreme learning machine is proposed to predict the product of pseudo inverse of image Jacobian matrix and image feature error and online sequential extreme learning machine is proposed to predict the product of pseudo inverse of image Jacobian matrix and image feature error. In MOS-ELM, MARS is used to evaluate the importance of input features and select specific features as the input features of online sequential extreme learning machine, so as to obtain better generalization performance and increase the stability of regression model. Finally, the method is applied to the speed predictive control of the manipulator end effector controlled by image-based visual servo and the prediction of machine learning data sets. Experimental results show that the algorithm has high prediction accuracy on machine learning data sets and good control performance in image-based visual servo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.