Video quality assessment (VQA) is now a fast-growing field, maturing in the full reference (FR) case, yet challenging in the exploding no reference (NR) case. In this paper, we investigate some variants of the popular FR VMAF video quality assessment algorithm, using both support vector regression and feedforward neural networks. We also extend it to the NR case, using different features but similar learning, to develop a partially unified framework for VQA. When fully trained, FR algorithms such as VMAF perform very well on test datasets, reaching a 90%+ match in the popular correlation coefficients PCC and SRCC. However, for predicting performance in the wild, we train/test them individually for each dataset. With an 80/20 train/test split, we still achieve about 90% performance on average in both PCC and SRCC, with up to 7–9% gains over VMAF, using an improved motion feature and better regression. Moreover, we even obtain good performance (about 75%) if we ignore the reference, treating FR as NR, partly justifying our attempts at unification. In the true NR case, typically with amateur user-generated data, we avail of many more features, but still reduce complexity vs. recent algorithms VIDEVAL and RAPIQUE, while achieving performance within 3–5% of them. Moreover, we develop a method to analyze the saliency of features, and conclude that for both VIDEVAL and RAPIQUE, a small subset of their features provide the bulk of the performance. We also touch upon the current best NR methods: MDT-VSFA, and PVQ which reach above 80% performance. In short, we identify encouraging improvements in trainability in FR, while constraining training complexity against leading methods in NR, elucidating the saliency of features for feature selection.
Video quality assessment (VQA) is now a fastgrowing subject, beginning to mature in the full reference (FR) case, while the burgeoning no reference (NR) case remains challenging. We investigate variants of the popular VMAF video quality assessment algorithm for the FR case, using support vector regression and feedforward neural networks, and extend it to the NR case, using the same learning architectures, to develop a partially unified framework for VQA. When heavily trained, algorithms such as VMAF perform well on test datasets, with 90%+ match; but predicting performance in the wild is better done by training/testing from scratch, as we do. Even from scratch, we achieve 90%+ performance in FR, with gains over VMAF. And we greatly reduce complexity vs. leading recent NR algorithms, VIDEVAL, RAPIQUE, yet exceed 80% in SRCC. In our preliminary testing, we find the improvements in trainability, while also constraining computational complexity, as quite encouraging, suggesting further study and analysis.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.