Accurate traffic flow data is crucial for traffic control and management in an intelligent transportation system (ITS), and thus traffic flow prediction research attracts significant attention in the transportation community. Previous studies have suggested that raw traffic flow data may be contaminated by noises caused by unexpected reasons (e.g., loop detector damage, roadway maintenance, etc.), which may degrade traffic flow prediction accuracy. To address this issue, we proposed an ensemble framework via ensemble empirical mode decomposition (EEMD) and artificial neural network (ANN) to predict traffic flow under different time intervals ahead. More specifically, the proposed framework firstly employed the EEMD model to suppress the noises in the raw traffic data, which were then processed to predict traffic flow at time steps under different time scales (i.e., 1, 2, and 10 min). We verified our model performance on three loop detectors’ data, which were supported by the Department of Transportation, Minnesota. The research findings can help traffic participants collect more accurate traffic flow data and thus benefits transportation practitioners by helping them to make more reasonable traffic decisions.
As an important means of multidimensional observation on the sea, ocean sensor networks (OSNs) could meet the needs of comprehensive information observations in large-scale and multifactor marine environments. In what concerns OSNs, accurate location information is the basis of the data sets. However, because of the multipath effect—signal shadowing by waves and unintentional or malicious attacks—outlier measurements occur frequently and inevitably, which directly degrades the localization accuracy. Therefore, increasing localization accuracy in the presence of outlier measurements is a critical issue that needs to be urgently tackled in OSNs. In this case, this paper proposed a robust, non-cooperative localization algorithm (RNLA) using received signal strength indication (RSSI) in the presence of outlier measurements in OSNs. We firstly formulated the localization problem using a log-normal shadowing model integrated with a first order Taylor series. Nevertheless, the problem was infeasible to solve, especially in the presence of outlier measurements. Hence, we then converted the localization problem into the optimization problem using squared range and weighted least square (WLS), albeit in a nonconvex form. For the sake of an accurate solution, the problem was then transformed into a generalized trust region subproblem (GTRS) combined with robust functions. Although GTRS was still a nonconvex framework, the solution could be acquired by a bisection approach. To ensure global convergence, a block prox-linear (BPL) method was incorporated with the bisection approach. In addition, we conducted the Cramer–Rao low bound (CRLB) to evaluate RNLA. Simulations were carried out over variable parameters. Numerical results showed that RNLA outperformed the other algorithms under outlier measurements, notwithstanding that the time for RNLA computation was a little bit more than others in some conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.