This paper proposes a transverse flux machine which has the topology of flux-concentrating and passive rotor, and also conducts a design and optimisation for machine. With working process of the machine introduced, its topology structure and composition are introduced. The optimisation objectives and design parameters are obtained with analysis. Furthermore, the performance equations are deduced to determine the parameters which affect performance. Ten free parameters should be optimised and the number of pole pair is first optimised with preliminary simulation. Subsequently, Taguchi method is applied to reduce the number of free parameters, and four parameters are selected to be further optimised. Three approximation models are created, and the Kriging model is better to predict the simulation results, thereby substitute the simulation to be used to algorithm. Accordingly, NSGA-II and MOPSO are used to acquire the optimal design for the machine, and the best solution of algorithm is determined by the simulation based on the results from the two algorithms. Finally, the prototype experiment is conducted to verify the optimisation method and simulation. The whole optimisation process for design and optimisation of electrical machine which is timesaving in comparison with optimisation with only simulation can provide the reference for electrical machine's design.
This paper creates a fuse-projectile-barrel coupling model and conducts an implicit-explicit sequential finite element dynamic simulation to analyze the response of the components in ammunition to shock loadings during the whole launch process accurately. The engraving process continues at 3.05 ms and leads to the acceleration fluctuation of the fuse bearings. The deflection of the gun barrel due to gravity at 52 degrees quadrant elevation (QE) is acquired. Then the displacement and velocity of the projectile are obtained to verify the gun tube deflection. The bearing axial and radial acceleration in the fuse are depicted. The results indicate that the axial acceleration imposed on the bearings during launch is a major loading, and base pressure and pressure dissipation result in shock loadings on the bearings. The accelerated spin and collision of the projectile with the barrel produce centrifugal inertia force and gyroscopic coupling, which influence the radial acceleration. In addition to this, a calculation method is proposed to work out the maximal contact stress of the bearing's components. The method is combined with the bearings' components maximal acceleration from simulation. The results of the research prove that the calculation method is correct and credible. The research conclusions provide some reference for the structural design of a trajectory correcting fuse.
Buffer structure is a traditional measure to improve the ammunition's performance of withstanding impact loadings during launch process. On that basis, this paper proposes a parametric optimization for the gasket, which is served as buffer structure in spin microgenerator's rotating rack used in trajectory correction fuze to effectively reduce the stress of bearings used in the rack. It is a finite element dynamic simulation based on rack-projectile-barrel coupling to acquire variation of the bearings' stress. A rack-projectile-barrel coupling model is built and the simulation pre-process is described. At first, the parametric analysis for the gasket is conducted. The effect of the gasket's axial thickness and elastic modulus on the bearings' stress is studied, and the results show that singly changing one of the two gasket's parameters cannot effectively reduce the two-ball bearings' stress. Then, based on the two gasket's parameters, the design of experiment method is applied with 25 sample points established. A kind of approximation, response surface model is created and its fitting accuracy is verified. Single-objective and multi-objective optimization are conducted based on the response surface model, respectively. And the multi-objective optimization for the gasket can successfully reduce the two bearings' stress to the value below the bearing material's yield strength. In addition, to check the optimization's effectiveness, an experiment is carried out and the results indicate that the gasket whose axial thickness and elastic modulus have been optimized can effectively improve the rotating rack's performance of withstanding impact loadings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.