To better exploit search logs and model users' behavior patterns, numerous click models are proposed to extract users' implicit interaction feedback. Most traditional click models are based on the probabilistic graphical model (PGM) framework, which requires manually designed dependencies and may oversimplify user behaviors. Recently, methods based on neural networks are proposed to improve the prediction accuracy of user behaviors by enhancing the expressive ability and allowing flexible dependencies. However, they still suffer from the data sparsity and cold-start problems. In this paper, we propose a novel graph-enhanced click model (GraphCM) for web search. Firstly, we regard each query or document as a vertex, and propose novel homogeneous graph construction methods for queries and documents respectively, to fully exploit both intra-session and inter-session information for the sparsity and cold-start problems. Secondly, following the examination hypothesis 1 , we separately model the attractiveness estimator and examination predictor to output the attractiveness scores and examination probabilities, where graph neural networks and neighbor interaction techniques are applied to extract the auxiliary information encoded in the pre-constructed homogeneous graphs. Finally, we apply combination functions to integrate examination probabilities and attractiveness scores into click predictions. Extensive experiments conducted on three real-world session datasets show that GraphCM not only outperforms the state-of-art models, but also achieves superior performance in addressing the data sparsity and cold-start problems. CCS CONCEPTS• Information systems → Users and interactive retrieval.
Modern information retrieval systems, including web search, ads placement, and recommender systems, typically rely on learning from user feedback. Click models, which study how users interact with a ranked list of items, provide a useful understanding of user feedback for learning ranking models. Constructing "right" dependencies is the key of any successful click model. However, probabilistic graphical models (PGMs) have to rely on manually assigned dependencies, and oversimplify user behaviors. Existing neural network based methods promote PGMs by enhancing the expressive ability and allowing flexible dependencies, but still suffer from exposure bias and inferior estimation. In this paper, we propose a novel framework, Adversarial Imitation Click Model (AICM), based on imitation learning. Firstly, we explicitly learn the reward function that recovers users' intrinsic utility and underlying intentions. Secondly, we model user interactions with a ranked list as a dynamic system instead of one-step click prediction, alleviating the exposure bias problem. Finally, we minimize the JS divergence through adversarial training and learn a stable distribution of click sequences, which makes AICM generalize well across different distributions of ranked lists. A theoretical analysis has indicated that AICM reduces the exposure bias from ( 2 ) to ( ). Our studies on a public web search dataset show that AICM not only outperforms state-of-the-art models in traditional click metrics but also achieves superior performance in addressing the exposure bias and recovering the underlying patterns of click sequences. CCS CONCEPTS• Information systems → Users and interactive retrieval; Query log analysis.
The ball-balancing robot (ballbot) is a good platform to test the effectiveness of a balancing controller. Considering balancing control, conventional model-based feedback control methods have been widely used. However, contacts and collisions are difficult to model, and often lead to failure in balancing control, especially when the ballbot tilts a large angle. To explore the maximum initial tilting angle of the ballbot, the balancing control is interpreted as a recovery task using Reinforcement Learning (RL). RL is a powerful technique for systems that are difficult to model, because it allows an agent to learn policy by interacting with the environment. In this paper, by combining the conventional feedback controller with the RL method, a compound controller is proposed. We show the effectiveness of the compound controller by training an agent to successfully perform a recovery task involving contacts and collisions. Simulation results demonstrate that using the compound controller, the ballbot can keep balance under a larger set of initial tilting angles, compared to the conventional model-based controller.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.