-2,3,4,5-tetrahydro-1H-3-benzazepine), an atypical dopamine receptor-1 (D 1 receptor) agonist, has shown many D 1 receptor-independent effects, such as neuroprotection, blockade of Na 1 channel, and promotion of spontaneous glutamate release, which resemble the effects of the sigma-1 receptor activation. In the present work, we explored the potential modulation of SKF83959 on the sigma-1 receptor. The results indicated that SKF83959 dramatically promoted the binding of 3 H(1)-pentazocine (a selective sigma-1 receptor agonist) to the sigma-1 receptor in brain and liver tissues but produced no effect on 3 H-progesterone binding (a sigma-1 receptor antagonist). The saturation assay and the dissociation kinetics assay confirmed the allosteric effect. We further demonstrated that the SKF83959 analogs, such as SCH22390 [(R)-(1)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrochloride] and SKF38393 [(+/-)-1-phenyl-2,3,4,5-tetrahydro-(1H)-3-benzazepine-7,8-diol hydrobromide], also showed the similar allosteric effect on the sigma-1 receptor in the liver tissue but not in the brain tissue. Moreover, all three tested chemicals elicited no significant effect on 3 H-1,3-di(2-tolyl)-guanidine ( 3 H-DTG) binding to the sigma-2 receptor. The present data uncovered a new role of SKF83959 and its analogs on the sigma-1 receptor, which, in turn, may reveal the underlying mechanism for the D 1 receptor-independent effect of the drug.
Unveiling the key mechanism of temporal lobe epilepsy (TLE) for the development of novel treatments is of increasing interest, and anti-inflammatory miR-146a is now considered a promising molecular target for TLE. In the current study, a C57BL/6 TLE mouse model was established using the lithium-pilocarpine protocol. The seizure degree was evaluated according to the Racine scale, and level 5 was considered the threshold for generalized convulsions. Animals were sacrificed to analyze the hippocampus at three time points (2 h and 4 and 8 weeks after pilocarpine administration to evaluate the acute, latent, and chronic phases, resp.). After intranasal delivery of miR-146a mimics (30 min before pilocarpine injection), the percent of animals with no induced seizures increased by 6.7%, the latency to generalized convulsions was extended, and seizure severity was reduced. Additionally, hippocampal damage was alleviated. While the relative miR-146a levels significantly increased, the expression of its target mRNAs (IRAK-1 and TRAF-6) and typical inflammatory modulators (NF-κB, TNF-α, IL-1β, and IL-6) decreased, supporting an anti-inflammatory role of miR-146a via the TLR pathway. This study is the first to demonstrate that intranasal delivery of miR-146a mimics can improve seizure onset and hippocampal damage in the acute phase of lithium-pilocarpine-induced seizures, which provides inflammation-based clues for the development of novel TLE treatments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.