To understand how the brain processes sensory information to guide behavior, we must know how stimulus representations are transformed throughout the visual cortex. Here we report an open, large-scale physiological survey of activity in the awake mouse visual cortex: the Allen Brain Observatory Visual Coding dataset. This publicly available dataset includes cortical activity from nearly 60,000 neurons from 6 visual areas, 4 layers, and 12 transgenic mouse lines from 243 adult mice, in response to a systematic set of visual stimuli. We classify neurons based on joint reliabilities to multiple stimuli and validate this functional classification with models of visual responses. While most classes are characterized by responses to specific subsets of the stimuli, the largest class is not reliably responsive to any of the stimuli and becomes progressively larger in higher visual areas. These classes reveal a functional organization wherein putative dorsal areas show specialization for visual motion signals. Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:
Convolutional neural networks trained on object recognition derive some inspiration from the neuroscience of the visual system in primates, and have been used as models of the feedforward computation performed in the primate ventral stream. In contrast to the hierarchical organization of primates, the visual system of the mouse has flatter hierarchy. Since mice are capable of visually guided behavior, this raises questions about the role of architecture in neural computation. In this work, we introduce a framework for building a biologically constrained convolutional neural network model of lateral areas of the mouse visual cortex. The structural parameters of the network are derived from experimental measurements, specifically estimates of numbers of neurons in each area and cortical layer, the interareal connectome, and the statistics of connections between cortical layers. This network is constructed to support detailed task-optimized models of mouse visual cortex, with neural populations that can be compared to specific corresponding populations in the mouse brain. The code is freely available to support such research.
Convolutional neural networks trained on object recognition derive inspiration from the neural architecture of the visual system in mammals, and have been used as models of the feedforward computation performed in the primate ventral stream. In contrast to the deep hierarchical organization of primates, the visual system of the mouse has a shallower arrangement. Since mice and primates are both capable of visually guided behavior, this raises questions about the role of architecture in neural computation. In this work, we introduce a novel framework for building a biologically constrained convolutional neural network model of the mouse visual cortex. The architecture and structural parameters of the network are derived from experimental measurements, specifically the 100-micrometer resolution interareal connectome, the estimates of numbers of neurons in each area and cortical layer, and the statistics of connections between cortical layers. This network is constructed to support detailed task-optimized models of mouse visual cortex, with neural populations that can be compared to specific corresponding populations in the mouse brain. Using a well-studied image classification task as our working example, we demonstrate the computational capability of this mouse-sized network. Given its relatively small size, MouseNet achieves roughly 2/3rds the performance level on ImageNet as VGG16. In combination with the large scale Allen Brain Observatory Visual Coding dataset, we use representational similarity analysis to quantify the extent to which MouseNet recapitulates the neural representation in mouse visual cortex. Importantly, we provide evidence that optimizing for task performance does not improve similarity to the corresponding biological system beyond a certain point. We demonstrate that the distributions of some physiological quantities are closer to the observed distributions in the mouse brain after task training. We encourage the use of the MouseNet architecture by making the code freely available.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.