The high cycle fatigue properties of three industrial 0.12% Ti microalloyed steels with different nitrogen contents (56, 40, and 30 ppm in molten steel of tundish) are investigated. The results show that <20% of the fatigue crack initiation sites are oxide inclusions of size in 16.8 μm ≈ 55.9 μm, while the rest 80% are surface defects. No TiN inclusions cause fatigue failure and the fatigue limit strength slightly decreases with increasing N contents as the yield strength decreases with a coarser ferrite grain. Inclusions characterization in the section near the fracture shows that the average sizes of TiN inclusions in H56, M40, and L30 steels are 3.50, 3.22, and 2.89 μm, and the maximum sizes are 6.92, 6.67, and 6.23 μm, respectively. Calculating for a cooling rate of 0.2 K s−1 using ChemAppPy precipitation model, the size of TiN inclusions will increase from 6.1 to 7.1 μm, when increasing N content from 30 to 60 ppm. The relationships between nitrogen content, TiN inclusions, and fatigue failure quantified by experimental test and modeling show that the nitrogen content in steel can be relaxed up to 60 ppm when considering economical denitrogenization and fatigue safety.
BackgroundRecent evidence suggests that enhancer RNAs (eRNAs) play key roles in cancers. Identification of immune-related eRNAs (ireRNAs) in melanoma can provide novel insights into the mechanisms underlying its genesis and progression, along with potential therapeutic targets.AimTo establish an ireRNA-related prognostic signature for melanoma and identify potential drug candidates.MethodsThe ireRNAs associated with the overall survival (OS-ireRNAs) of melanoma patients were screened using data from The Cancer Genome Atlas (TCGA) via WGCNA and univariate Cox analysis. A prognostic signature based on these OS-ireRNAs was then constructed by performing the least absolute shrinkage and selection operator (LASSO) Cox regression analysis. The immune landscape associated with the prognostic model was evaluated by the ESTIMATE algorithm and CIBERSORT method. Finally, the potential drug candidates for melanoma were screened through the cMap database.ResultsA total of 24 OS-ireRNAs were obtained, of which 7 ireRNAs were used to construct a prognostic signature. The ireRNAs-related signature performed well in predicting the overall survival (OS) of melanoma patients. The risk score of the established signature was further verified as an independent risk factor, and was associated with the unique tumor microenvironment in melanoma. We also identified several potential anti-cancer drugs for melanoma, of which corticosterone ranked first.ConclusionsThe ireRNA-related signature is an effective prognostic predictor and provides reliable information to better understand the mechanism of ireRNAs in the progression of melanoma.
The effects of finishing rolling temperature on the microstructure and mechanical properties of a direct quenched and partitioned (DQ&P) steel were investigated by a thermal simulation machine, a field emission scanning electron microscope (FE-SEM), electron backscattering diffraction (EBSD), and a transmission electron microscope (TEM). The results show that the original austenite grain size was refined by 31% as the finishing rolling temperature decreased from 920 °C to 840 °C, leading to the formation of the finest martensite lath at 840 °C. At the same time, the lower finishing rolling temperature resulted in a higher dislocation density, and consequently improved the stability of the retained austenite. Moreover, compared to the conventional Q&P process, the comprehensive mechanical properties of a steel with similar chemical composition can be enhanced by DQ&P processing. With the decrease of finishing rolling temperature from 920 °C to 840 °C, the strength and total elongation increases. The yield strength, tensile strength, and total elongation reach the maximum values of 1121 MPa, 1134 MPa, and 11.7%, respectively, at 840 °C.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.