Background: Quantitation analysis and chromatographic fingerprint of multi-components are frequently used to evaluate quality of herbal medicines but fail to reveal activity of the components. It is necessary to develop a rational approach of chromatography coupled with activity detection for quality assessment of herbal medicines. Methods: An on-line HPLC-ultraviolet detection-2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) free radical scavenging (HPLC-UV-ABTS) method was developed to obtain the chromatographic fingerprints and ABTS +• inhibition profiles (active fingerprints) of Rehmanniae Radix (Dihuang) and Rehmannia Radix Praeparata (Shu Dihuang). Eighteen compounds showing ABTS +• inhibition activity were identified by HPLC-fourier-transform mass spectrometry (HPLC-FTMS). Verbascoside was used as a positive control to evaluate the total activities of the samples and the contribution rate of each compound. The similarities of the chromatographic and active fingerprints were estimated by the vectorial angle cosine method. Results: The results showed that the HPLC-UV-ABTS method could efficiently detect antioxidant activity of the herbal medicine samples. The antioxidants were different between the two herbs and several new antioxidants were identified in Shu Dihuang. A function equation was generated in terms of the negative peak area (x) and the concentrations of verbascoside (y, μg/mL), y = 2E-07 × 4-8E-05 × 3 + 0.0079 × 2 + 0.5755x + 1.4754, R 2 = 1. Iridoid glycosides were identified as main antioxidants and showed their higher contributions to the total activity of the samples. The total contributions of the three main active components in the Dihuang and Shu Dihuang samples to the total activity, such as echinacoside, verbascoside and an unknown compound, were 39.2-58.1% and 55.9-69.4%, respectively. The potencies of the main active components in the Shu Dihuang samples were two to ten times those in the Dihuang samples. Similarity values for S12 in the chromatographic fingerprints and S03, S12 and P03 in the active fingerprints were less than 0.9. The three batches of samples might show their different quality with the other samples. Conclusions: The results suggested that the combination of "quantity-effect" research strategy and the HPLC-UV-ABTS analysis method could comprehensively evaluate the active components and quality of Dihuang and Shu Dhuang.
An on-line high-performance liquid chromatography-biochemical detection (HPLC-BCD) method, in which compounds separated by HPLC were on-line reacted with enzyme and substrate solutions delivered by flow injection and the enzyme inhibition signal was collected by UV detection, was developed to rapidly screen α-glucosidase inhibitors from green tea extracts in this study. The chromatographic fingerprints and enzyme inhibition profiles of the different brands of green tea could be simultaneously detected by the on-line HPLC-BCD method. Enzyme inhibition profiles were detected by the UV detector at 415 nm based on the reaction of α-glucosidase and p-nitrophenyl α-d-glucopyranoside (PNPG). PNPG (1.25 mm), α-glucosidase (0.4 U/mL) and the flow rate 0.07 mL/min were applied as optimized parameters to detect α-glucosidase inhibitors in green tea. Four components in green tea showed α-glucosidase inhibition action and three of them were identified as HHDP-galloyl glucose, (-)-epigallocatechin-3-gallate and (-)-epicatechin-3-gallate by HPLC-fourier-transform mass spectrometry (HPLC-FTMS). Two brands of green tea derived from Mengding and Enshi mountainous areas might be superior to the other samples in the prevention and treatment of diabetes owing to their stronger activities of enzyme inhibitors. The proposed on-line HPLC-BCD method could be used to rapidly identify the potential enzyme inhibitors in complex matrixes.
A rapid screening and determination method, in conjunction with a database for confirmation, was established based on 66 antibiotic compounds using ultra-high performance liquid chromatography-linear ion trap/Orbitrap high resolution mass spectrometry (UPLC-LTQ/Orbitrap MS). The analytes were extracted with acetonitrile using ultrasonic extraction. The separation was performed on a C18 column (100 mm×2.1 mm, 1.8 μm) with a gradient elution of 0.1% (v/v) formic acid and acetonitrile. The retention time and accurate mass of the precursor ion were used for rapid screening in positive ionization mode, with the fragment ions obtained by higher energy collisional dissociation used for confirmation. The results indicated that each compound showed good linearity with a correlation coefficient of >0.99. The limits of detection (LODs) were in the range 2-4 μg/kg, and the limits of quantification (LOQs) were in the range 5-10 μg/kg. The average recoveries at three levels (1LOQ, 10LOQ, and 30LOQ) were between 58.2% and 119.1%, and the relative standard deviations (RSDs) were between 1.03% and 11.9%. The method is simple, rapid, reliable, and accurate, which is suitable for rapid screening and determination of the 66 antibiotic compounds in cosmetics.
We developed a new on-line method of ultra-performance liquid chromatography coupled with biochemical detection (UHPLC-BCD) to screen acetylcholinesterase (AChE) inhibitors in complex matrixes. Chromatography separation was performed using an Xtimate UHPLC C18 column (100 mm × 2.1 mm, 1.8 μm) and a gradient elution with methanol–0.1% formic acid at a flow rate of 0.08 mL/min. The BCD was based on a colorimetric method using Ellman’s reagent, and the detection wavelength was at 405 nm. Galanthamine was used as a positive reference to validate the methodology. The detection and quantitation limits of the UHPLC-BCD method were 0.018 and 0.060 μg, respectively. A functional equation was generated in terms of the negative peak area (X) and galanthamine concentration (Y, μg/mL). The regression equation was Y = 0.0028X2 + 0.4574X + 50.7776, R2 = 0.9993. UHPLC-fourier-transform mass spectrometry detection results revealed that five alkaloids showed obvious AChE inhibitory activities including coptisin, epiberberine, jatrorrhizine, berberine and palmatine. The relative AChE inhibitory activities of jatrorrhizine, berberine and palmatine in the Coptidis Rhizoma sample were equal to that of 257.0, 2355 and 283.9 μg/mL of galanthamine, respectively. This work demonstrated that the UHPLC-BCD method was convenient and feasible, and could be widely used for the screening and activity evaluation of the bioactive components in the complex extracts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.