We present an improved mascon approach to transform monthly spherical harmonic solutions based on GRACE satellite data into mass anomaly estimates in Greenland. The GRACE-based spherical harmonic coefficients are used to synthesize gravity anomalies at satellite altitude, which are then inverted into mass anomalies per mascon. The limited spectral content of the gravity anomalies is properly accounted for by applying a low-pass filter as part of the inversion procedure to make the functional model spectrally consistent with the data. The full error covariance matrices of the monthly GRACE solutions are properly propagated using the law of covariance propagation. Using numerical experiments, we demonstrate the importance of a proper data weighting and of the spectral consistency between functional model and data. The developed methodology is applied to process real GRACE level-2 data (CSR RL05). The obtained mass anomaly estimates are integrated over five drainage systems, as well as over entire Greenland. We find that the statistically optimal data weighting reduces random noise by 35-69%, depending on the drainage system. The obtained mass anomaly time-series are de-trended to eliminate the contribution of ice discharge and are compared with detrended surface mass balance (SMB) time-series computed with the Regional Atmospheric Climate Model (RACMO 2.3). We show that when using a statistically optimal data weighting in GRACE data processing, the discrepancies between GRACE-based estimates of SMB and modelled SMB are reduced by 24-47%.B J. Ran
Satellite gravimetry data acquired by the Gravity Recovery and Climate Experiment (GRACE) allows to derive the temporal evolution in ice mass for both the Antarctic Ice Sheet (AIS) and the Greenland Ice Sheet (GIS). Various algorithms have been used in a wide range of studies to generate Gravimetric Mass Balance (GMB) products. Results from different studies may be affected by substantial differences in the processing, including the applied algorithm, the utilised background models and the time period under consideration. This study gives a detailed description of an assessment of the performance of GMB algorithms using actual GRACE monthly solutions for a prescribed period as well as synthetic data sets. The inter-comparison exercise was conducted in the scope of the European Space Agency’s Climate Change Initiative (CCI) project for the AIS and GIS, and was, for the first time, open to everyone. GMB products generated by different groups could be evaluated and directly compared against each other. For the period from 2003-02 to 2013-12, estimated linear trends in ice mass vary between −99 Gt/yr and −108 Gt/yr for the AIS and between −252 Gt/yr and −274 Gt/yr for the GIS, respectively. The spread between the solutions is larger if smaller drainage basins or gridded GMB products are considered. Finally, findings from the exercise formed the basis to select the algorithms used for the GMB product generation within the AIS and GIS CCI project.
The accurate knowledge of the groundwater storage variation (∆GWS) is essential for reliable water resource assessment, particularly in arid and semi-arid environments (e.g., Australia, the North China Plain (NCP)) where water storage is significantly affected by human activities and spatiotemporal climate variations. The large-scale ∆GWS can be simulated from a land surface model (LSM), but the high model uncertainty is a major drawback that reduces the reliability of the estimates. The evaluation of the model estimate is then very important to assess its accuracy. To improve the model performance, the terrestrial water storage variation derived from the Gravity Recovery And Climate Experiment (GRACE) satellite mission is commonly assimilated into LSMs to enhance the accuracy of the ∆GWS estimate. This study assimilates GRACE data into the PCRaster Global Water Balance (PCR-GLOBWB) model. The GRACE data assimilation (DA) is developed based on the three-dimensional ensemble Kalman smoother (EnKS 3D), which considers the statistical correlation of all extents (spatial, temporal, vertical) in the DA process. The ∆GWS estimates from GRACE DA and four LSM simulations (PCR-GLOBWB, the Community Atmosphere Biosphere Land Exchange (CABLE), the Water Global Assessment and Prognosis Global Hydrology Model (WGHM), and WorldWide Water (W3)) are validated against the in situ groundwater data. The evaluation is conducted in terms of temporal correlation, seasonality, long-term trend, and detection of groundwater depletion. The GRACE DA estimate shows a significant improvement in all measures, notably the correlation coefficients (respect to the in situ data) are always higher than the values obtained from model simulations alone (e.g.,~0.15 greater in Australia, and~0.1 greater in the NCP). GRACE DA also improves the estimation of groundwater depletion that the models cannot accurately capture due to the incorrect information of the groundwater demand (in, e.g., PCR-GLOBWB, WGHM) or the unavailability of a groundwater consumption routine (in, e.g., CABLE, W3). In addition, this study conducts the inter-comparison between four model simulations and reveals that PCR-GLOBWB and CABLE provide a more accurate ∆GWS
We propose a technique to regularize a GRACE-based mass-anomaly time-series in order to (i) to quantify the Standard Deviation (SD) of random noise in the data, and (ii) to reduce the level of that noise. The proposed regularization functional minimizes the Month-to-month Year-toyear Double Differences (MYDD) of mass anomalies. As such, it does not introduce any bias in the linear trend and the annual component, two of the most common features in GRACE-based mass anomaly time-series. In the context of hydrological and ice sheet studies, the proposed regularization functional can be interpreted as an assumption about the stationarity of climatological conditions. The optimal regularization parameter and noise SD are obtained using Variance Component Estimation. To demonstrate the performance of the proposed technique, we apply it to both synthetic and real data. In the latter case, two geographic areas are considered: the Tonlé Sap basin in Cambodia and Greenland. We show that random noise in the data can be efficiently (1.5-2 times) mitigated in this way, whereas no noticeable bias is introduced. We also discuss various findings that can be made on the basis of the estimated noise SD. We show, among others, that knowledge of noise SD facilitates the analysis of differences between GRACE-based and alternative estimates of mass variations. Moreover, inaccuracies in the latter can also be quantified in this way. For instance, we find that noise in the surface mass anomalies in Greenland estimated using the Regional Climate Model RACMO2.3 is at the level of 2-6 cm equivalent water heights. Furthermore, we find that this noise shows a clear correlation with the amplitude of annual mass variations: it is lowest in the northwest of Greenland and largest in the south. We attribute this noise to limitations in the modelling of the meltwater accumulation and runoff .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.