Nanoscale Fe(0) (nFe(0)) can detoxify Cr(VI)-bearing wastewater and groundwater, but rapid passivation is a negative factor for large-scale remediation applications. In this study, a magnetic FeS@Fe(0) hybrid material was fabricated by immobilization of iron sulfide (FeS) onto Fe(0) particles to improve the Cr(VI) removal capacity. The solid characterization confirmed that Fe(0) particles were encapsulated by amorphous iron monosulfide. The Cr(VI) uptake by FeS@Fe(0) hybrid particles was found to follow pseudo-second-order rate kinetics, and the Langmuir isotherm was most appropriate to describe Cr(VI) sorption. Meanwhile, the FeS@Fe(0) hybrid particles showed a much higher efficiency towards Cr(VI) sequestration compared to individual nFe(0). Moreover, the results of batch experiments with various adsorbent doses indicated that the reactivity of FeS@Fe(0) varies with different FeS-to-Fe(0) molar ratios. The reaction rate constants for Cr(VI) removal first increased with an increasing FeS-to-Fe(0) ratio from 0/1 to 1/9, and then decreased for the FeS-to-Fe(0) ratio increased further 1/5 or 1/3. For environmental parameters, there was a negative effect of increasing the solution pH and dissolved oxygen on Cr(VI) removal. Furthermore, a mechanistic analysis revealed that Cr(VI) reduction occurred predominantly at the solid-liquid interface, and that Fe(II) regenerated from FeS@Fe(0) corrosion may account for 52% of the Cr(VI) reduction, while electrons from Fe(0) and FeS account for the rest. After treatment, Cr(VI) was completely transformed and immobilized as solid Fe-Cr hydroxide precipitates, thus avoiding secondary contamination. The FeS@Fe(0) hybrid material has a better potential for treating Cr(VI)-bearing wastewater than nano Fe(0).
Although several abiotic processes have been reported that can transform antibiotics, little is known about whether and how microbiological processes may degrade antibiotics in the environment. This work isolated one tetracycline degrading bacterial strain, Stenotrophomonas maltophilia strain DT1, and characterized the biotransformation of tetracycline by DT1 under various environmental conditions. The biotransformation rate was the highest when the initial pH was 9 and the reaction temperature was at 30°C, and can be described using the Michaelis-Menten model under different initial tetracycline concentrations. When additional substrate was present, the substrate that caused increased biomass resulted in a decreased biotransformation rate of tetracycline. According to disk diffusion tests, the biotransformation products of tetracycline had lower antibiotic potency than the parent compound. Six possible biotransformation products were identified, and a potential biotransformation pathway was proposed that included sequential removal of N-methyl, carbonyl, and amine function groups. Results from this study can lead to better estimation of the fate and transport of antibiotics in the environment and has the potential to be utilized in designing engineering processes to remove tetracycline from water and soil.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.