The JUNO experiment locates in Jinji town, Kaiping city, Jiangmen city, Guangdong province. The geographic location is east longitude 112 • 31'05' and North latitude 22 • 07'05'. The experimental site is 43 km to the southwest of the Kaiping city, a county-level city in the prefecture-level city Jiangmen in Guangdong province. There are five big cities, Guangzhou, Hong Kong, Macau, Shenzhen, and Zhuhai, all in ∼200 km drive distance, as shown in figure 3.
We report a new search for weakly interacting massive particles (WIMPs) using the combined low background data sets acquired in 2016 and 2017 from the PandaX-II experiment in China. The latest data set contains a new exposure of 77.1 live days, with the background reduced to a level of 0.8×10^{-3} evt/kg/day, improved by a factor of 2.5 in comparison to the previous run in 2016. No excess events are found above the expected background. With a total exposure of 5.4×10^{4} kg day, the most stringent upper limit on the spin-independent WIMP-nucleon cross section is set for a WIMP with mass larger than 100 GeV/c^{2}, with the lowest 90% C.L. exclusion at 8.6×10^{-47} cm^{2} at 40 GeV/c^{2}.
We report the WIMP dark matter search results using the first physics-run data of the PandaX-II 500 kg liquid xenon dual-phase time-projection chamber, operating at the China JinPing underground Laboratory. No dark matter candidate is identified above background. In combination with the data set during the commissioning run, with a total exposure of 3.3×10 4 kg-day, the most stringent limit to the spin-independent interaction between the ordinary and WIMP dark matter is set for a range of dark matter mass between 5 and 1000 GeV/c 2 . The best upper limit on the scattering cross section is found 2.5 × 10 −46 cm 2 for the WIMP mass 40 GeV/c 2 at 90% confidence level.Weakly interacting massive particles, WIMPs in short, are a class of hypothetical particles that came into existence shortly after the Big Bang. The WIMPs could naturally explain the astronomical and cosmological evidences of dark matter in the Universe. The weak interactions between WIMPs and ordinary matter could lead to the recoils of atomic nuclei that produce detectable signals in deep-underground direct detection experiments. Over the past decade, the dual-phase xenon time-projection chambers (TPC) emerged as a powerful technology for WIMP searches both in scaling up the target mass, as well as in improving background rejection [1][2][3]. LUX, a dark matter search experiment with a 250 kg liquid xenon target, has recently reported the best limit of 6×10 −46 cm 2 on the WIMP-nucleon scattering cross section [4] The PandaX-II experiment, a half-ton scale dual-phase xenon experiment at the China JinPing underground Laboratory (CJPL), has recently reported the dark matter search results from its commissioning run (Run 8,19.1 live days) with a 5845 kg-day exposure [5]. The data were contaminated with significant 85 Kr background. After a krypton distillation campaign in early 2016, PandaX-II commenced physics data taking in March 2016. In this paper, we report the combined WIMP search results using the data from the first physics run from March 9 to June 30, 2016 (Run 9, 79.6 live days) and Run 8, with a total of 3.3×10 4 kg-day exposure, the largest reported WIMP data set among dual-phase xenon detectors in the world to date.The PandaX-II detector has been described in detail in Ref. [5]. The liquid xenon target consists of a cylindrical TPC with dodecagonal cross section (opposite-side distance 646 mm), confined by the polytetrafluoroethylene (PTFE) reflective wall, and a vertical drift distance of 600 mm defined by the cathode mesh and gate grid located at the bottom and top. For each physical event, the prompt scintillation photons (S1) and the delayed electroluminescence photons (S2) from the ionized electrons are collected by two arrays of 55 Hamamatsu R11410-arXiv:1607.07400v3 [hep-ex] Hamamatsu R8520-406 1-inch PMTs serving as an active veto. The γ background, which produces electron recoil (ER) events, can be distinguished from the dark matter nuclear recoil (NR) using the S2-to-S1 ratio. During the data taking period in Run 9, a few diffe...
Much like ordinary matter, dark matter might consist of elementary particles, and weakly interacting massive particles are one of the prime suspects. During the past decade, the sensitivity of experiments trying to directly detect them has improved by three to four orders of magnitude, but solid evidence for their existence is yet to come. We overview the recent progress in direct dark matter detection experiments and discuss future directions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.