As a successful approach to self-supervised learning, contrastive learning aims to learn invariant information shared among distortions of the input sample. While contrastive learning has yielded continuous advancements in sampling strategy and architecture design, it still remains two persistent defects: the interference of task-irrelevant information and sample inefficiency, which are related to the recurring existence of trivial constant solutions. From the perspective of dimensional analysis, we find out that the dimensional redundancy and dimensional confounder are the intrinsic issues behind the phenomena, and provide experimental evidence to support our viewpoint. We further propose a simple yet effective approach MetaMask, short for the dimensional Mask learned by Meta-learning, to learn representations against dimensional redundancy and confounder. MetaMask adopts * Equal contributions.
Vision-language models are pre-trained by aligning image-text pairs in a common space so that the models can deal with open-set visual concepts by learning semantic information from textual labels. To boost the transferability of these models on downstream tasks in a zero-shot manner, recent works explore generating fixed or learnable prompts, i.e., classification weights are synthesized from natural language describing task-relevant categories, to reduce the gap between tasks in the training and test phases. However, how and what prompts can improve inference performance remains unclear. In this paper, we explicitly provide exploration and clarify the importance of including semantic information in prompts, while existing prompt methods generate prompts without exploring the semantic information of textual labels. A challenging issue is that manually constructing prompts, with rich semantic information, requires domain expertise and is extremely time-consuming. To this end, we propose Causality-pruning Knowledge Prompt (CapKP) for adapting pre-trained vision-language models to downstream image recognition. CapKP retrieves an ontological knowledge graph by treating the textual label as a query to explore task-relevant semantic information. To further refine the derived semantic information, CapKP introduces causality-pruning by following the first principle of Granger causality. Empirically, we conduct extensive evaluations to demonstrate the effectiveness of CapKP, e.g., with 8 shots, CapKP outperforms the manual-prompt method by 12.51% and the learnable-prompt method by 1.39% on average, respectively. Experimental analyses prove the superiority of CapKP in domain generalization compared to benchmark approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.