Since the sudden outbreak of coronavirus disease 2019 , it has rapidly evolved into a momentous global health concern. Due to the lack of constructive information on the pathogenesis of COVID-19 and specific treatment, it highlights the importance of early diagnosis and timely treatment.In this study, 11 key blood indices were extracted through random forest algorithm to build the final assistant discrimination tool from 49 clinical available blood test data which were derived by commercial blood test equipments. The method presented robust outcome to accurately identify COVID-19 from a variety of suspected patients with similar CT information or similar symptoms, with accuracy of 0.9795 and 0.9697 for the cross-validation set and test set, respectively. The tool also demonstrated its outstanding performance on an external validation set that was completely independent of the modeling process, with sensitivity, specificity, and overall accuracy of 0.9512, 0.9697, and 0.9595, respectively. Besides, 24 samples from overseas infected patients with COVID-19 were used to make an in-depth clinical assessment with accuracy of 0.9167. After multiple verification, the reliability and repeatability of the tool has been fully evaluated, and it has the potential to develop into an emerging technology to identify COVID-19 and lower the burden of global public health. The : medRxiv preprint proposed tool is well-suited to carry out preliminary assessment of suspected patients and help them to get timely treatment and quarantine suggestion. The assistant tool is now available online at
Background Liquid biopsies based on blood samples have been widely accepted as a diagnostic and monitoring tool for cancers, but extremely high sensitivity is frequently needed due to the very low levels of the specially selected DNA, RNA, or protein biomarkers that are released into blood. However, routine blood indices tests are frequently ordered by physicians, as they are easy to perform and are cost effective. In addition, machine learning is broadly accepted for its ability to decipher complicated connections between multiple sets of test data and diseases. Objective The aim of this study is to discover the potential association between lung cancer and routine blood indices and thereby help clinicians and patients to identify lung cancer based on these routine tests. Methods The machine learning method known as Random Forest was adopted to build an identification model between routine blood indices and lung cancer that would determine if they were potentially linked. Ten-fold cross-validation and further tests were utilized to evaluate the reliability of the identification model. Results In total, 277 patients with 49 types of routine blood indices were included in this study, including 183 patients with lung cancer and 94 patients without lung cancer. Throughout the course of the study, there was correlation found between the combination of 19 types of routine blood indices and lung cancer. Lung cancer patients could be identified from other patients, especially those with tuberculosis (which usually has similar clinical symptoms to lung cancer), with a sensitivity, specificity and total accuracy of 96.3%, 94.97% and 95.7% for the cross-validation results, respectively. This identification method is called the routine blood indices model for lung cancer, and it promises to be of help as a tool for both clinicians and patients for the identification of lung cancer based on routine blood indices. Conclusions Lung cancer can be identified based on the combination of 19 types of routine blood indices, which implies that artificial intelligence can find the connections between a disease and the fundamental indices of blood, which could reduce the necessity of costly, elaborate blood test techniques for this purpose. It may also be possible that the combination of multiple indices obtained from routine blood tests may be connected to other diseases as well.
Tuberculosis remains one of the deadliest infectious diseases worldwide. Only 5–15% of people infected with Mycobacterium tuberculosis develop active TB disease (ATB), while others remain latently infected (LTBI) during their lifetime, which has a completely different clinical treatment schedule. However, most current clinical diagnostic methods are based on the immune response of M. tuberculosis infections and cannot distinguish ATB from LTBIs. Thus, the rapid diagnosis of active or latent tuberculosis infections remains a serious challenge for clinicians. In this work, based on the test data of a total of 478 patients, 36 blood biochemical data were specially included with T-SPOT.TB detection results which are all from routine clinical practice as commercially available. Then a discrimination method to detect ATB infections was successfully developed based on these data by the random forest algorithm. This method presents a robust classification performance with AUC as 0.9256 and 0.8731 for the cross-validation set and the external validation set, respectively. This work suggests an innovative strategy for identification of ATB disease from a single drop of blood with advantages of being timely, efficient, and economical. It also provides valuable information for the comprehensive understanding of TB with deep associations between TB infection and routine blood test data. The web server of this identification method, called ATBdiscrimination, is now available online at .
Gastric cancer (GC) continues to be one of the major causes of cancer deaths worldwide. Meanwhile, liquid biopsies have received extensive attention in the screening and detection of cancer along with better understanding and clinical practice of biomarkers. In this work, 58 routine blood biochemical indices were tentatively used as integrated markers, which further expanded the scope of liquid biopsies and a discrimination system for GC consisting of 17 top-ranked indices, elaborated by random forest method was constructed to assist in preliminary assessment prior to histological and gastroscopic diagnosis based on the test data of a total of 2951 samples. The selected indices are composed of eight routine blood indices (MO%, IG#, IG%, EO%, P-LCR, RDW-SD, HCT and RDW-CV) and nine blood biochemical indices (TP, AMY, GLO, CK, CHO, CK-MB, TG, ALB and γ-GGT). The system presented a robust classification performance, which can quickly distinguish GC from other stomach diseases, different cancers and healthy people with sensitivity, specificity, total accuracy and area under the curve of 0.9067, 0.9216, 0.9138 and 0.9720 for the cross-validation set, respectively. Besides, this system can not only provide an innovative strategy to facilitate rapid and real-time GC identification, but also reveal the remote correlation between GC and these routine blood biochemical parameters, which helped to unravel the hidden association of these parameters with GC and serve as the basis for subsequent studies of the clinical value in prevention program and surveillance management for GC. The identification system, called GC discrimination, is now available online at http://lishuyan.lzu.edu.cn/GC/.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.