BackgroundThe leaf age for harvesting flue-cured tobacco leaves is closely related to the quality of tobacco leaves, so an appropriate leaf age for harvesting is important for improving yield and quality of flue-cured tobacco, however, at present, there are few studies on effects of leaf age on physiological and biochemical changes during flue-curing and there is no clear standard of proper leaf ages for harvesting in production.ResultsIn the Yunnan tobacco-growing area, an experiment was carried from 2016 to 2017 and different leaf ages were set. The results demonstrate that leaf age has a significant on tissue cell gap, leaf age and flue-curing stages exert significant effects on upper epidermis, palisade and spongy tissue, and leaf thickness of tobacco leaves. The thicknesses of upper and lower epidermis as well as palisade and spongy tissues at different ages show an approximately W-shaped change trend during flue-curing. With the advance of flue-curing stages, contents of starch, chlorophyll, carotenoid, and water in tobacco leaves at different leaf ages decrease, while polyphenol and malondialdehyde (MDA) contents increase. The older the leaf, the faster the chlorophyll, carotenoid, and water contents reduce, while the faster the polyphenol and MDA content rise during flue-curing. The flue-cured tobacco leaves at 116 DAT (days after transplanting) show the highest contents of total nitrogen and nicotine, followed by 123 DAT and those at 130 DAT are the lowest; however, the contents of total sugar and reducing sugar demonstrate a contrary tendency, and the starch content at 116 DAT is much lower than those in the other two treatments. The proportion of superior tobacco, average price, yield, and output value of upper tobacco leaves at different leaf ages are the highest at 123 DAT. The highest sensory evaluation score is found at 123 DAT, while that at 130 DAT is significantly lower in comparison with the other two treatments.ConclusionsTobacco leaves harvested at 123 DAT are mature and exhibit a low degree of membrane lipid peroxidation, moderate chemical compositions, and high economic value. 123 DAT improves availability of tobacco leaves.
The purpose of the study is to explore the effect of flue-curing procedure on the diversity of microbial communities in tobaccos and the dynamic change of compositions of microbial communities in the flue-curing process. It expects to provide a theoretical basis for the application of microbes in tobacco leaves and a theoretical basis and idea for optimization of the flue-curing technologies. By investigating tobacco variety K326, the tests were carried out for comparing the conventional flue-curing procedure and dry-ball temperature set and wet-ball temperature degradation flue-curing procedure. Based on the culture-independent approach and high-throughput sequencing procedure, the relationship between the flue-curing procedure for tobaccos and microbial communities in tobaccos was revealed by measuring the dynamic change of microbial communities. The results indicated that:(1) Relative to surface wiping method, washing method was more suitable for the sampling of microbes on the surface of tobacco leaves; (2) Dry-ball temperature set and wet-ball temperature degradation flue-curing procedure was more favorable for maintaining the microbial diversity of tobaccos; (3) Relative to bacteria of the tobaccos, the succession rule of the fungal communities in tobaccos was relatively steady; (4)Compared with bacterial community diversity, the fungal community diversity presented an obvious negative correlation with temperature and humidity during the flue-curing process. (5) The function of bacterial communities in tobaccos matched with the material transformation law of tobaccos, having a direct correlation on the flue-curing process. In short, Dry-ball temperature set and wet-ball temperature degradation flue-curing procedure can more favorably maintain the microbial diversity of tobaccos; moreover, the function of the tobacco system involved in microbes in tobaccos was closely related to the material transformation law of tobaccos in the flue-curing process. It validated that the bacteria in tobaccos play an important role in the flue-curing process of tobaccos.
The use of mild pretreatment conditions can significantly lower the cost of the biorefining process. This study evaluated a mild pretreatment approach for tobacco stem waste using a combination of dilute acid and dilute alkali. By optimizing the pretreatment conditions, we obtained a high reducing sugar concentration at a pretreatment temperature <100°C. Increasing the acid or alkali strength in a single pretreatment step did not always improve the result; instead, the synergistic effect of both pretreatment components was important. To increase the bioethanol titer, a high solid loading, 30%, was used for bioethanol fermentation. Compared with batch fermentation, enzyme feeding with a shorter feeding period (24 h) enhanced the bioethanol production by 4.32%, generating 86.88 g/L bioethanol. The results provide valuable insights into the effects of two-step acid/alkali pretreatment on enzymolysis. The findings suggest that the optimized synergistic pretreatment process is efficient for bioethanol fermentation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.