Persistence is an important feature of soil moisture, which affects many important processes such as land–air interaction and ecohydrological processes. Soil moisture datasets from reanalysis, remote-sensing observations and land surface models have been widely used in various ecohydrological studies, however, due to the complexity of hydrological processes, the essential features of soil moisture such as spatial-temporal characteristics and persistence still need to be further quantified. This study focused on the Australia region and used in situ observation from fourteen International Soil Moisture Network sites to evaluate soil moisture from six gridded products, including satellite remote-sensing records (ESA CCI), output of reanalysis (ERA5-Land) and land surface models (GLDAS and GLEAM). High correlation coefficients between observations and the other soil moisture datasets were gotten. Regional averaged inter-annual variations of soil moisture were relatively large with some dry periods (2002–2010, 2013–2016) and wet periods (2011–2012) indicated by these gridded products. General coherent spatial patterns were found in long-term soil moisture with large differences in the lateral inflow area of the Great Artesian Basin. The coefficient of variation of these soil moisture datasets generally decreased from northwest to southeast, but the enhanced vegetation index coefficient of variation was larger in the southwest corner, northeast (non-coastal areas) and the lateral inflow area. Persistence calculated from various soil moisture datasets had quite large differences compared with measurements. Meanwhile, little coherence was gotten among different surface soil moisture datasets, the persistence of deep soil moisture seemed to be significantly overestimated. Therefore, models still need to improve the temporal characteristics with the persistence rather than the correlation coefficient.
Vegetation greening, which refers to the interannual increasing trends of vegetation greenness, has been widely found on the regional to global scale. Meanwhile, climate extremes, especially several drought, significantly damage vegetation. The Southwest China (SWC) region experienced massive drought from 2009 to 2012, which severely damaged vegetation and had a huge impact on agricultural systems and life. However, whether these extremes have significantly influenced long-term (multiple decades) vegetation change is unclear. Using the latest remote sensing-based records, including leaf area index (LAI) and gross primary productivity (GPP) for 1982–2016 and enhanced vegetation index (EVI) for 2001–2019, drought events of 2009–2012 only leveled off the greening (increasing in vegetation indices and GPP) temporally and long-term greening was maintained. Meanwhile, drying trends were found to unexpectedly coexist with greening.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.