Small oligomers formed early along human islet amyloid polypeptide (hIAPP) aggregation is responsible for the cell death in Type II diabetes. The epigallocatechin gallate (EGCG), a green tea extract, was found to inhibit hIAPP fibrillation. However, the inhibition mechanism and the conformational distribution of the smallest hIAPP oligomer – dimer are mostly unknown. Herein, we performed extensive replica exchange molecular dynamic simulations on hIAPP dimer with and without EGCG molecules. Extended hIAPP dimer conformations, with a collision cross section value similar to that observed by ion mobility-mass spectrometry, were observed in our simulations. Notably, these dimers adopt a three-stranded antiparallel β-sheet and contain the previously reported β-hairpin amyloidogenic precursor. We find that EGCG binding strongly blocks both the inter-peptide hydrophobic and aromatic-stacking interactions responsible for inter-peptide β-sheet formation and intra-peptide interaction crucial for β-hairpin formation, thus abolishes the three-stranded β-sheet structures and leads to the formation of coil-rich conformations. Hydrophobic, aromatic-stacking, cation-π and hydrogen-bonding interactions jointly contribute to the EGCG-induced conformational shift. This study provides, on atomic level, the conformational ensemble of hIAPP dimer and the molecular mechanism by which EGCG inhibits hIAPP aggregation.
Self-assembly is a process of key importance in natural systems and in nanotechnology. Peptides are attractive building blocks due to their relative facile synthesis, biocompatibility, and other unique properties. Diphenylalanine (FF) and its derivatives are known to form nanostructures of various architectures and interesting and varied characteristics. The larger triphenylalanine peptide (FFF) was found to self-assemble as efficiently as FF, forming related but distinct architectures of plate-like and spherical nanostructures. Here, to understand the effect of triaromatic systems on the self-assembly process, we examined carboxybenzyl-protected diphenylalanine (z-FF) as a minimal model for such an arrangement. We explored different self-assembly conditions by changing solvent compositions and peptide concentrations, generating a phase diagram for the assemblies. We discovered that z-FF can form a variety of structures, including nanowires, fibers, nanospheres, and nanotoroids, the latter were previously observed only in considerably larger or co-assembly systems. Secondary structure analysis revealed that all assemblies possessed a β-sheet conformation. Additionally, in solvent combinations with high water ratios, z-FF formed rigid and self-healing hydrogels. X-ray crystallography revealed a "wishbone" structure, in which z-FF dimers are linked by hydrogen bonds mediated by methanol molecules, with a 2-fold screw symmetry along the c-axis. All-atom molecular dynamics (MD) simulations revealed conformations similar to the crystal structure. Coarse-grained MD simulated the assembly of the peptide into either fibers or spheres in different solvent systems, consistent with the experimental results. This work thus expands the building block library for the fabrication of nanostructures by peptide self-assembly.
Fibrillar deposits formed by the aggregation of the human islet amyloid polypeptide (hIAPP) are the major pathological hallmark of type 2 diabetes mellitus (T2DM). Inhibiting the aggregation of hIAPP is considered the primary therapeutic strategy for the treatment of T2DM. Hydroxylated carbon nanoparticles have received great attention in impeding amyloid protein fibrillation owing to their reduced cytotoxicity compared to the pristine ones. In this study, we investigated the influence of hydroxylated single-walled carbon nanotubes (SWCNT-OHs) on the first step of hIAPP aggregation: dimerization by performing explicit solvent replica exchange molecular dynamics (REMD) simulations. Extensive REMD simulations demonstrate that SWCNT-OHs can dramatically inhibit interpeptide β-sheet formation and completely suppress the previously reported β-hairpin amyloidogenic precursor of hIAPP. On the basis of our simulation results, we proposed that SWCNT-OH can hinder hIAPP fibrillation. This was further confirmed by our systematic turbidity measurements, thioflavin T fluorescence, circular dichroism (CD), transmission electron microscope (TEM), and atomic force microscopy (AFM) experiments. Detailed analyses of hIAPP-SWCNT-OH interactions reveal that hydrogen bonding, van der Waals, and π-stacking interactions between hIAPP and SWCNT-OH significantly weaken the inter- and intrapeptide interactions that are crucial for β-sheet formation. Our collective computational and experimental data reveal not only the inhibitory effect but also the inhibitory mechanism of SWCNT-OH against hIAPP aggregation, thus providing new clues for the development of future drug candidates against T2DM.
Amyloid fibrils originating from the fibrillogenesis of misfolded amyloid proteins are associated with the pathogenesis of many neurodegenerative diseases, such as Alzheimer's, Parkinson's, and Huntington's diseases. Carbon nanotubes have been extensively applied in our life and industry due to their unique chemical and physical properties. Nonetheless, the details between carbon nanotubes and mature amyloid fibrils remain elusive. In this study, we explored the interplay between single-walled carbon nanotubes (SWCNTs) and preformed amyloid-β (Aβ) fibrils by atomic force microscopy at the single SWCNT level, together with ThT fluorescence, cellular viability assays, infrared spectroscopy, and molecular dynamics (MD) simulations. The results demonstrated that SWCNTs could partially destroy the preformed Aβ fibrils and form the Aβ-surrounded− SWCNTs conjugates, as well as reduce the β-sheet structures. Peak force quantitative nanomechanical measurements revealed that the conjugates have lower Young's modulus than fibrils. Furthermore, our MD simulation demonstrated that the dissociation ability was dependent on the binding sites of Aβ fibrils. Overall, this study provides an insight into the dissociation mechanism between SWCNT and Aβ fibrils, which could be beneficial for the study of bionanomaterials and the development of other potential drug candidates for amyloidosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.