This paper demonstrates a fabrication technology of Ag wrinkled electrodes with application in highly stretchable wireless sensors. Ag wrinkled thin films that were formed by vacuum deposition on top of pre-strained and relaxed polydimethylsiloxane (PDMS) substrates which have been treated using an O2 plasma and a surface chemical functionalization process can reach a strain limit up to 200%, while surface adhesion area can reach 95%. The electrical characteristics of components such as resistors, inductors and capacitors made from such Ag conductors have remained stable under stretching exhibiting low temperature and humidity coefficients. This technology was then demonstrated for wireless wearable electronics using compatible processing with established micro/nano fabrication technology.
The traditional processing model of the temperature error for a gyroscope is serial, meaning that de-noising and temperature drift compensation are implemented in a two-step procedure. Hence, the result of the latter depends on the performance of the former; in particular, negative de-noising produces a negative compensation result. To reduce this dependence, we propose a parallel processing algorithm of the temperature error based on variational mode decomposition (VMD) and an augmented nonlinear differentiator (AND). An application to a micro-electro-mechanical system gyroscope is described to demonstrate the effectiveness and applicability of the proposed algorithm. Its major advantages are (i) a combination of VMD, extreme learning machines, and AND is proposed, and an adaptive accelerometer factor determination method for AND is given based on the VMD, both of which improve the effectiveness of the de-noising process; (ii) temperature drift and noise in the temperature error can be extracted and processed synchronously, thereby reducing the dependency of drift compensation on the de-noising result and making the temperature error process more efficient.
A vectorial strain gauge method using a single sensing element is reported based on the double-sided polydimethylsiloxane (PDMS) Fraunhofer diffraction gratings structures. Using O2 plasma treatment steps, orthogonal wrinkled gratings were fabricated on both sides of a pre-strained PDMS film. Diffracted laser spots from this structure have been used to experimentally demonstrate, that any applied strain can be quantitatively characterized in both the x and y directions with an error of less than 0.6% and with a gauge factor of approximately 10. This simple and low cost technology which is completely different from the traditional vectorial strain gauge method, can be applied to surface vectorial strain measurement and multi-axis integrated mechanical sensors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.