The spiking neural network (SNN) is regarded as a promising candidate to deal with the great challenges presented by current machine learning techniques, including the high energy consumption induced by deep neural networks. However, there is still a great gap between SNNs and the online meta-learning performance of artificial neural networks. Importantly, existing spike-based online meta-learning models do not target the robust learning based on spatio-temporal dynamics and superior machine learning theory. In this invited article, we propose a novel spike-based framework with minimum error entropy, called MeMEE, using the entropy theory to establish the gradient-based online meta-learning scheme in a recurrent SNN architecture. We examine the performance based on various types of tasks, including autonomous navigation and the working memory test. The experimental results show that the proposed MeMEE model can effectively improve the accuracy and the robustness of the spike-based meta-learning performance. More importantly, the proposed MeMEE model emphasizes the application of the modern information theoretic learning approach on the state-of-the-art spike-based learning algorithms. Therefore, in this invited paper, we provide new perspectives for further integration of advanced information theory in machine learning to improve the learning performance of SNNs, which could be of great merit to applied developments with spike-based neuromorphic systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.