A major research plan entitled “Integrated research on the ecohydrological process of the Heihe River Basin” was launched by the National Natural Science Foundation of China in 2010. One of the key aims of this research plan is to establish a research platform that integrates observation, data management, and model simulation to foster twenty-first-century watershed science in China. Based on the diverse needs of interdisciplinary studies within this research plan, a program called the Heihe Watershed Allied Telemetry Experimental Research (HiWATER) was implemented. The overall objective of HiWATER is to improve the observability of hydrological and ecological processes, to build a world-class watershed observing system, and to enhance the applicability of remote sensing in integrated ecohydrological studies and water resource management at the basin scale. This paper introduces the background, scientific objectives, and experimental design of HiWATER. The instrumental setting and airborne mission plans are also outlined. The highlights are the use of a flux observing matrix and an eco-hydrological wireless sensor network to capture multiscale heterogeneities and to address complex problems, such as heterogeneity, scaling, uncertainty, and closing water cycle at the watershed scale. HiWATER was formally initialized in May 2012 and will last four years until 2015. Data will be made available to the scientific community via the Environmental and Ecological Science Data Center for West China. International scientists are welcome to participate in the field campaign and use the data in their analyses.
An analysis is carried out for two hydrologically contrasting but thermodynamically similar areas on the Tibetan Plateau, to evaluate soil moisture analysis based on the European Centre for Medium‐Range Weather Forecasts (ECMWF) previous optimum interpolation scheme and the current point‐wise extended Kalman filter scheme. To implement the analysis, this study used two regional soil moisture and soil temperature networks (i.e., Naqu and Maqu) on the Tibetan Plateau. For the cold‐semiarid Naqu area, both ECMWF soil moisture analyses significantly overestimate the regional soil moisture in the monsoon seasons. For the cold‐humid Maqu network area, the ECMWF products have comparable accuracy as reported by previous studies in the humid monsoon period. The comparisons were made among the liquid soil moisture analysis from ECMWF, the ground station's measurements and the satellite estimates from the Advanced Scatterometer sensor. The results show reasonable performances of the ECMWF soil moisture analyses (i.e., both optimum interpolation and extended Kalman filter products) and the Advanced Scatterometer level 2 products, when compared to the in situ measurements.
Current land surface models still have difficulties with producing reliable surface heat fluxes and skin temperature (T sfc ) estimates for high-altitude regions, which may be addressed via adequate parameterization of the roughness lengths for momentum (z 0m ) and heat (z 0h ) transfer. In this study, the performance of various z 0h and z 0m schemes developed for the Noah land surface model is assessed for a high-altitude site (3430 m) on the northeastern part of the Tibetan Plateau. Based on the in situ surface heat fluxes and profile measurements of wind and temperature, monthly variations of z 0m and diurnal variations of z 0h are derived through application of the Monin-Obukhov similarity theory. These derived values together with the measured heat fluxes are utilized to assess the performance of those z 0m and z 0h schemes for different seasons. The analyses show that the z 0m dynamics are related to vegetation dynamics and soil water freeze-thaw state, which are reproduced satisfactorily with current z 0m schemes. Further, it is demonstrated that the heat flux simulations are very sensitive to the diurnal variations of z 0h . The newly developed z 0h schemes all capture, at least over the sparse vegetated surfaces during the winter season, the observed diurnal variability much better than the original one. It should, however, be noted that for the dense vegetated surfaces during the spring and monsoon seasons, not all newly developed schemes perform consistently better than the original one. With the most promising schemes, the Noah simulated sensible heat flux, latent heat flux, T sfc , and soil temperature improved for the monsoon season by about 29%, 79%, 75%, and 81%, respectively. In addition, the impact of T sfc calculation and energy balance closure associated with measurement uncertainties on the above findings are discussed, and the selection of the appropriate z 0h scheme for applications is addressed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.