Efficient solar-thermal energy conversion is essential for the harvesting and transformation of abundant solar energy, leading to the exploration and design of efficient solar-thermal materials. Carbon-based materials, especially graphene, have the advantages of broadband absorption and excellent photothermal properties, and hold promise for solar-thermal energy conversion. However, to date, graphene-based solar-thermal materials with superior omnidirectional light harvesting performances remain elusive. Herein, hierarchical graphene foam (h-G foam) with continuous porosity grown via plasma-enhanced chemical vapor deposition is reported, showing dramatic enhancement of broadband and omnidirectional absorption of sunlight, which thereby can enable a considerable elevation of temperature. Used as a heating material, the external solar-thermal energy conversion efficiency of the h-G foam impressively reaches up to ≈93.4%, and the solar-vapor conversion efficiency exceeds 90% for seawater desalination with high endurance.
A novel mussel-inspired injectable hydrogel with self-healing and anti-biofouling capabilities is developed and it possesses great potential as a drug-delivery carrier. The hydrogel can heal autonomously from repeated structural damage and also effectively prevent non-specific cell attachment and biofilm formation.
Microbial adhesion, biofilm formation and associated microbial infection are common challenges faced by implanted biomaterials (e.g., hydrogels) in bioengineering applications. In this work, an injectable self-healing hydrogel with antimicrobial and antifouling properties was prepared through self-assembly of an ABA triblock copolymer employing catechol functionalized polyethylene glycol (PEG) as A block and poly{[2-(methacryloyloxy)-ethyl] trimethylammonium iodide}(PMETA) as B block. This hydrogel exhibits excellent thermosensitivity, and can effectively inhibit the growth of E. coli (>99.8% killing efficiency) and prevent cell attachment. It can also heal autonomously from repeated damage, through mussel-inspired catechol-mediated hydrogen bonding and aromatic interactions, exhibiting great potential in bioengineering applications.
Materials such as metals, semiconductors, and oxides are attractive at nanometer scales due to the physical and chemical property differences with their bulk counterparts as induced by the quantum confinement effect and large surface-to-volume ratios. In particular, heterogeneous nanostructures consisting of semiconductors and noble metals are extremely important because of the synergistic effects occurring at the interfaces between their noble metal and semiconductor domains; these often equip the heterogeneous nanostructures with improved properties compared to those of isolated individual components. Thus far, heterogeneous nanostructures have garnered a considerable research interest, and tremendous development in achieving high degree control over these nanostructures with respect to their domain size, morphology, and composition has been realized. Their immense application potential in optics, catalysis, imaging, and biomedicine render them a field full of original innovation possibilities. Herein, we demonstrate a phenomenon observed in core-shell nanostructures composed of noble metals and silver sulfide (Ag2S): the inside-out migration of noble metals in Ag2S nanoparticles. We prepare core-shell nanostructures with noble metals and Ag2S residing at the core and shell regions, respectively, through various synthetic strategies including seed-mediated growth and galvanic replacement reactions followed by sulfidation. We then characterize the core-shell nanostructures before and after aging them in toluene at room temperature (e.g. 25 C) for a period of time up to 72 h. In contrast to the reported diffusion of Au from the outside to the inside of InAs or PbTe nanoparticles, which results in an Au core encapsulated by an amorphous InAs or PbTe shell, the noble metals (Au, Ag, Pd, or Pt) in core-shell nanostructures with noble metals and Ag2S residing at the core and shell regions, respectively, are found to diffuse from the inside to the outside through the Ag2S shell. Thus, heterogeneous nanodimers consisting of the corresponding noble metal and Ag2S are formed. Observations using an electron transmission microscope confirm that the inside-out migration of noble metals in Ag2S is carried out in a holistic manner. Due to the apparent interface mismatch between face-centered cubic noble metals and monoclinic Ag2S crystal phases, defects such as vacancies must exist at these interfaces. This makes the migration of noble metals in Ag2S possible by either a vacancy/substitutional mechanism or by the self-purification mechanism that occurs intrinsically in nanoscale semiconductors. As the migration rate of noble metals in Ag2S increases with the decrease in the size of the noble metal core and the radius of noble metal atoms, the inside-out migration rates of Ag, Pd, and Pt in Ag2S are found to be much higher than that of Au because of their smaller particle sizes or atom radii. This scientific phenomenon can be effective in the development of synthetic routes for heterogeneous nanostructures that might not be o...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.