Hand-foot-mouth disease (HFMD) is a common infectious disease in children and is particularly severe in Guangxi, China. Meteorological conditions are known to play a pivotal role in the HFMD. Previous studies have reported numerous models to predict the incidence of HFMD. In this study, we proposed a new method for the HFMD prediction using GeoDetector and a Long Short-Term Memory neural network (LSTM). The daily meteorological factors and HFMD records in Guangxi during 2014–2015 were adopted. First, potential risk factors for the occurrence of HFMD were identified based on the GeoDetector. Then, region-specific prediction models were developed in 14 administrative regions of Guangxi, China using an optimized three-layer LSTM model. Prediction results (the R-square ranges from 0.39 to 0.71) showed that the model proposed in this study had a good performance in HFMD predictions. This model could provide support for the prevention and control of HFMD. Moreover, this model could also be extended to the time series prediction of other infectious diseases.
Quantitative studies of the multiple factors influencing the mountain-mass effect, which causes higher temperatures in mountainous than non-mountainous regions, remain insufficient. This study estimated the air temperature in the Yellow River Basin, which spans three different elevation ranges, using multi-source data to address the uneven distribution of regional meteorological stations. The differences in mountain-mass effect for different geomorphic regions at the same altitude were then compared. The Manner–Kendall nonparametric test was used to analyse time series changes in temperature. Moreover, we employed the geographically weighted regression (GWR) model, with MODIS land-surface and air-temperature data, station-based meteorological data, vertical temperature gradients corresponding to the 2000–2015 period, and elevation data, to estimate the correlation between monthly mean surface temperature and air temperature in the Yellow River Basin. The following major results were obtained. (1) The GWR method and ground station-based observations enhanced the accuracy of air-temperature estimates with an error of only ± 0.74°C. (2) The estimated annual variations in the spatial distributions of 12-month average temperatures showed that the upper Tibetan Plateau is characterised by low annual air temperatures with a narrow spatial distribution, whereas north-eastern areas upstream of the Inner Mongolia Plateau are characterised by higher air temperatures. Changes in the average monthly air temperature were also high in the middle and lower reaches, with a narrow spatial distribution. (3) Considering the seasonal variation in the temperature lapse rate, the mountain-mass effect in the Yellow River Basin was very high. In the middle of each season, the variation of air temperature at a given altitude over the Tibetan Plateau was higher than that over the Loess Plateau and Jinji Mountain. The results of this study reveal the unique temperature characteristics of the Yellow River Basin according to its geomorphology. Furthermore, this research contributes to quantifying mountain-mass effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.