In this work we study the stochastic recursive control problem, in which the aggregator (or called generator) of the backward stochastic differential equation describing the running cost is continuous but not necessarily Lipschitz with respect to the first unknown variable and the control, and monotonic with respect to the first unknown variable. The dynamic programming principle and the connection between the value function and the viscosity solution of the associated Hamilton-Jacobi-Bellman equation are established in this setting by the generalized comparison theorem of backward stochastic differential equations and the stability of viscosity solutions. Finally we take the control problem of continuous-time Epstein-Zin utility with non-Lipschitz aggregator as an example to demonstrate the application of our study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.