This paper investigates the control and localization of a heterogeneous (different sensor, mechanical, computational capabilities) group of mobile robots. The group considered here has several inexpensive sensor-limited and computationally-limited robots which follow a leader robot in a desired formation over long distances. This situation is similar to a search, de-mining, or planetary exploration situation where there are several deployable/disposable robots led by a more sophisticated leader. Specifically, the robots in this paper are designed for highway safety applications where they automatically deploy and maneuver safety barrels commonly used to control traffic in highway work zones. Complex sensing and computation are performed by the leader while the followers perform simple operations under the leader’s guidance. This architecture allows followers to be simple, inexpensive and have minimal sensors. Theoretical and statistical analysis of a tracking-based localization method is provided. A simple follow-the-leader control method is also presented. Experimental results of localization and follow-the-leader formation-motion are included.
This paper investigates the control and localization of a heterogeneous (e.g., different sensing, mechanical, computational capabilities) group of mobile robots. The group considered here has several inexpensive sensor-limited and computationally limited robots, which follow a leader robot in a desired formation over long distances. This situation is similar to a search, demining, or planetary exploration situation where there are several deployable/disposable robots led by a more sophisticated leader. Specifically, the robots in this paper are designed for highway safety applications where they automatically deploy and maneuver safety barrels commonly used to control traffic in highway work zones. Complex sensing and computation are performed by the leader, while the followers perform simple operations under the leader's guidance. This architecture allows followers to be simple, inexpensive, and have minimal sensors. Theoretical and statistical analysis of a tracking-based localization method is provided. A simple follow-the-leader control method is also presented, including a method for changing follower's configuration. Experimental results of localization and follow-the-leader formation-motion are included.Index Terms-Bezier trajectory, follow-the-leader control, heterogeneous robot groups.
Mobile robotic systems must sense constraints imposed by a dynamically changing environment and predictably react to those changes in real-time. Complexity arises in mobile robotic systems because the computing platform travels through the environment with which the system is interacting. These systems have spatio-temporal requirements in the sense that correct behavior is defined in terms of both space and time. The focus of this paper is mobile robotic platforms that must sense their environment and avoid obstacles as they navigate from one point to another. We present a design and analysis methodology for these platforms that integrates spatio-temporal attributes with fixed priority realtime scheduling through the use of zone and processing window abstractions. We propose an algorithm for adjustment of the processing window in order maximize the speed of the robot as it faces obstacles in the environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.