MiRNAs (microRNAs) are the most abundant family of small noncoding RNAs in mammalian cells. Increasing evidence shows that miRNAs are crucial regulators of individual development and cell homeostasis by controlling various biological processes. Therefore, miRNA dysfunction can lead to human diseases, especially in cancers with high morbidity and mortality worldwide. MiRNAs play different roles in these processes. In recent years, studies have found that miR-424-5p is closely related to the occurrence, development, prognosis and treatment of tumors. This review discusses how miR-424-5p plays a role in different kinds of cancers from different stages of tumors, including its roles in (i) promoting or inhibiting tumorigenesis, (ii) regulating tumor development in the tumor microenvironment and (iii) participating in cancer chemotherapy. This review provides a deep discussion of the latest findings on miR-424-5p and its importance in cancer, as well as a mechanistic analysis of the role of miR-424-5p in various tissues through target gene verification and pathway analysis.
Successful engraftment of hematopoietic stem cells (HSCs) and progenitor cells (HSPCs) may be considered as a basis for the repopulation of the blood cells after transplantation in adults. Therefore, in vivo and ex vivo expansion of HSCs holds great promise for clinical applications. In this review, the mechanisms of HSC expansion will be discussed, considering the previous studies and works of literature. This is aimed to identify the signaling pathways that regulate HSC expansion and improve the application of engraftment in disease management. The following aspects will be included: (i) Stimulation of HSCs growth in vivo through gene regulation and cytokines activation; (ii) direct or indirect induction of HSC expansion by regulating signaling pathways; (iii) addition to assisting cells to help in the proliferation of HSCs; (iv) changing of living environment in the HSCs cultures via adjusting components and forms of cultures; (v) enhancement of HSC expansion by incorporating substances, such as extracellular vesicles (EVs), UM171, among others. In this review, recent new findings that provide us with new insights into HSC expansion methods have been summarized. Furthermore, these findings will also provide more possibilities for the development of some novel strategies for expanding and engrafting HSCs applied for treatments of some hematopoietic disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.