A number of literature reports have shown that multi-view clustering can acquire a better performance on complete multi-view data. However, real-world data usually suffers from missing some samples in each view and has a small number of labeled samples. Additionally, almost all existing multi-view clustering models do not execute incomplete multi-view data well and fail to fully utilize the labeled samples to reduce computational complexity, which precludes them from practical application. In view of these problems, this paper proposes a novel framework called Semi-supervised Multi-View Clustering with Weighted Anchor Graph Embedding (SMVC_WAGE), which is conceptually simple and efficiently generates high-quality clustering results in practice. Specifically, we introduce a simple and effective anchor strategy. Based on selected anchor points, we can exploit the intrinsic and extrinsic view information to bridge all samples and capture more reliable nonlinear relations, which greatly enhances efficiency and improves stableness. Meanwhile, we construct the global fused graph compatibly across multiple views via a parameter-free graph fusion mechanism which directly coalesces the view-wise graphs. To this end, the proposed method can not only deal with complete multi-view clustering well but also be easily extended to incomplete multi-view cases. Experimental results clearly show that our algorithm surpasses some state-of-the-art competitors in clustering ability and time cost.
Deep learning networks are applied for defect detection, among which Cascade R-CNN is a multi-stage object detection network and is state of the art in terms of accuracy and efficiency. However, it is still a challenge for Cascade R-CNN to deal with complex and diverse defects, as the widely varied shapes of defects lead to inefficiency for the traditional convolution filter to extract features. Additionally, the imbalance in features, losses and samples cause lower accuracy. To address the above challenges, this paper proposes a multi-stage balanced R-CNN (MSB R-CNN) for defect detection based on Cascade R-CNN. Firstly, deformable convolution is adopted in different stages of the backbone network to improve its adaptability to the varying shapes of the defect. Then, the features obtained by the backbone network are refined and enhanced by the balanced feature pyramid. To overcome the imbalance of classification and regression loss, the balanced L1 loss is applied at different stages to correct it. Finally, for the sample selection, the interaction of union (IoU) balanced sampler and the online hard example mining (OHEM) sampler are combined at different stages to make the sampling more reasonable, which can bring a better accuracy and convergence effect to the model. The results of our experiments on the DAGM2007 dataset has shown that our network (MSB R-CNN) can achieve a mean average precision (mAP) of 67.5%, an increase of 1.5% mAP, compared to Cascade R-CNN.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.