As one of the ship energy efficiency optimization measures with the most energy saving and emission reduction potential, ship speed optimization has been recommended by the International Maritime Organization. In ship speed optimization, considering the influence of weather conditions, route segmentation and weather data loading methods significantly affect the reliability of speed optimization results. Therefore, taking the ocean-going container ship as the research object, on the basis of constructing the main engine fuel consumption prediction model and shaft speed prediction model based on machine learning methods, a route segmentation and weather loading-speed optimization iterative algorithm is proposed in this study. Single-objective speed optimization research is then conducted based on the algorithm. The research results show that the proposed algorithm effectively reduces the difference between optimized fuel consumption and actual fuel consumption, and can achieve a fuel-saving rate between 2.1% and 5.2%. This study achieves an accurate and reliable prediction of ship fuel consumption and shaft speed, and solves the strong coupling problem between route segmentation, weather loading, and speed optimization by iterative optimization of ship speed. The proposed algorithm provides strong technical support for ships to achieve the goal of energy saving and emission reduction.
Multi-object tracking (MOT) is an important research topic in the field of computer vision, including object detection and data association. However, problems such as missed detection and trajectory mismatch often lead to missing target information, thus resulting in missed target tracking and trajectory fragmentation. Uniform tracking confidence is also not conducive to the full utilization of detection results. Considering these problems, we first propose a threshold separation strategy, which sets different tracking thresholds for similarity matching and intersection over union (IoU) matching during association to make the distribution of detection information more reasonable. Then, the missing trajectories are screened and compensated with the predicted trajectories to improve the long-term tracking ability of the algorithm. When applied to different association algorithms or tracking algorithms, a better improvement effect can be obtained. It can achieve high tracking speed while achieving high tracking accuracy on the MOT Challenge dataset.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.