Here, the microwave-absorbing properties of 1-ethyl-3-methylimidazolium and 1-butyl-3-methylimidazolium ([E and BMIm] + -based) room-temperature ionic liquids (ILs) with different anions were systematically investigated by measuring dielectric properties in the 1-14 GHz microwave-frequency range. First, the dielectric properties of the [E and BMIm] + -based ILs were studied with a typical open-ended coaxial probe system. The results showed that the real part of permittivity ε values decreased from 13 to 4 and the values of loss tangent decreased from 5.91 to 0.24, meaning that ILs displayed high dielectric-loss characteristics at microwave-frequency ranges. Furthermore, it was found that the conductivity loss was dominant for dielectric loss in the low-frequency band, and the polarization loss played a major role in high-frequency bands. For the same anion ILs with different cations, the permittivity became higher as the length of the alkyl chain decreased. The absorption properties of [E and BMIm] + -based ILs could be obtained based on their dielectric properties, and found the ILs absorption bands were mainly concentrated in the C band and X band. It was noted that the maximum reflection loss (RL) of [BMIm][NTf 2 ] with a thickness of 4 mm reached −27.6 dB at 8.73 GHz, and the bandwidth of an RL less than −10 dB could be up to 4.3 GHz. The absorption peak frequency of the ILs gradually shifted to lower frequencies with increasing temperature and coating thickness, which might be caused by the change in impedance matching.
Recently, all-metal nanostructures for perfect absorption of light have attracted much attention due to their excellent plasmonic and photonic properties, but only narrow absorption bands were obtained in previous studies. In this paper, a new kind of metallic metasurface with wideband absorption of visible light is designed, which consists only of a gold nanotriangle array on the opaque metal substrate. By combining different resonant modes in the gradualchanged triangular nanostructure, the wide absorption waveband in visible region from 378 to 626 nm is achieved with more than 90% absorptivity. We demonstrate that the absorption property of the nanostructure can be controlled by tuning the cell size and incident angle. In addition, a metallic trapezoidal grating structure is proposed which can also realize wideband light absorption. This research provides a novel strategy in designing wideband metamaterial absorbers for visible light based on all-metal nanostructures which have great potential applications in light energy harvesting and photoelectric conversion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.