The development of flexible pressure sensors has attracted increasing research interest for potential applications such as wearable electronic skins and human healthcare monitoring. Herein, we demonstrated a piezoresistive pressure sensor based on AgNWs-coated hybrid architecture consisting of mesoscaled dome and microscaled pillar arrays. We experimentally showed that the key three-dimensional component for a pressure sensor can be conveniently acquired using a vacuum application during the spin-coating process instead of a sophisticated and expensive approach. The demonstrated hybrid structure exhibits dramatically improved sensing capability when compared with the conventional one-fold dome-based counterpart in terms of the sensitivity and detectable pressure range. The optimized sensing performance, by integrating D1000 dome and D50P100 MPA, reaches a superior sensitivity of 128.29 kPa–1 (0–200 Pa), 1.28 kPa–1 (0.2–10 kPa), and 0.26 kPa–1 (10–80 kPa) and a detection limit of 2.5 Pa with excellent durability. As a proof-of-concept, the pressure sensor based on the hybrid configuration was demonstrated as a versatile platform to accurately monitor different kinds of physical signals or pressure sources, e.g., wrist pulse, voice vibration, finger bending/touching, gas flow, as well as address spatial loading. We believe that the proposed architecture and developed methodology can be promising for future applications including flexible electronic devices, artificial skins, and interactive robotics.
BackgroundThere are many different reasons why patients could be experiencing pain in the gluteal area. Previous studies have shown an association between radicular low back pain (LBP) and gluteal pain (GP). Studies locating the specific level responsible for gluteal pain in lumbar disc hernias have rarely been reported.MethodsAll patients with lumbar disc herniation (LDH) in the Kanghua hospital from 2010 to 2014 were recruited. All patients underwent a lumbar spine MRI to clarify their LDH diagnosis, and patients were allocated to a GP group and a non-GP group. To determine the cause and effect relationship between LDH and GP, all of the patients were subjected to percutaneous endoscopic lumbar discectomy (PELD).ResultsA total of 286 cases were included according to the inclusive criteria, with 168 cases in the GP group and 118 cases in the non-GP group. Of these, in the GP group, 159 cases involved the L4/5 level and 9 cases involved the L5/S1 level, while in the non-GP group, 43 cases involved the L4/5 level and 48 cases involved the L5/S1 level. PELD was performed in both groups. Gluteal pain gradually disappeared after surgery in all of the patients. Gluteal pain recrudesced in a patient with recurrent disc herniation (L4/5).ConclusionsAs a clinical finding, gluteal pain is related to low lumbar disc hernia. The L4/5 level is the main level responsible for gluteal pain in lumbar disc hernia. No patients with gluteal pain exhibited involvement at the L3/4 level.Electronic supplementary materialThe online version of this article (doi:10.1186/s12891-016-1204-7) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.