Bending-moment faults and flexural-slip faults (FSFs), as two basic fault styles due to bending-related tangential longitudinal strain, extensively and prominently crop out as surface scarps in the Pamir-western Kunlun and southern Tian Shan regions, northwestern China. Characteristic geomorphic expression, favorable formation conditions, and the role in folding accommodation of active FSFs have been systematically summarized in our recent studies. Here we investigate similar properties for well-developed bending-moment normal fault (BMnF) scarps at four sites. Our study concludes the following: (i) BMnF scarps are relatively sinuous compared to FSF scarps and probably trend obliquely to the fold hinge. A group of BMnF scarps can delineate a single asymmetric graben or create grabens alternating with horsts. (ii) BMnF scarps primarily overlie poorly-layered conglomerates. The fold's interlimb angle can range from~160°to <40°, and the folding kinematics can vary from active-hinge migration to fixed-hinge rotation. (iii) The fault-zone width, fault spacing, and efficiency in folding accommodation significantly decrease with (a) thinner conglomerate beds, (b) a smaller interlimb angle, and (c) the transition of the hinge from migrated to fixed. (iv) Different bed lithologies and fold geometries beneath the surface account for the predominance of BMnF scarps on the western Kunlun piedmont and FSF scarps in the Pamir-Tian Shan convergent zone.(v) Presence of BMnF scarps on the western Kunlun piedmont indicates that~4 km of fault slip is transferred northward along a detachment at the base of the Cenozoic and is ultimately absorbed by the Mazatagh Thrust in the Tarim Basin.
Located at the northwestern syntaxis of the India‐Asia convergence zone, the Pamir orogen is characterized by complicated and strong active deformation. Constraining the detailed geometry and kinematics of major active structures is important both for understanding modern tectonic processes and for evaluating potential seismic hazards of the region. Our work focuses on the Muji Fault in the northeastern Pamir. Based on cumulative deformation recorded by landforms and coseismic deformation during the 2016 Mw 6.6 Aketao earthquake, we determine the spatial extent, slip motion, fault‐plane geometry, and slip rate of the fault, on the basis of which we clarify its role in the modern tectonics of the Pamir and investigate its seismic behavior and associated seismic hazards. Our study indicates that (i) the Muji Fault, along with the Kongur Extensional System to its south, acts as a boundary fault that accommodates a relative divergence rate of 1.4–2.0°/Ma between the central‐western and eastern Pamir; (ii) geometric discontinuities along the fault exerted an important control on seismic rupture termination and slip gap formation during the Aketao earthquake; and (iii) the cumulative surface‐faulting deformation cannot be formed coseismically by repetitions of the Aketao earthquake, implying significant aseismic (postseismic and/or interseismic) creeping or possibly larger (approximately Mw 7.2), surface‐faulting earthquakes. Our study highlights the usefulness of correlating cumulative and coseismic deformation patterns in active tectonic investigations and regional seismic hazard evaluations.
Uplift and amalgamation of the high-elevation (>3000 m) Tian Shan and Pamir ranges in Central Asia restricts westerly atmospheric flow and thereby limits moisture delivery to the leeward Taklimakan Desert in the Tarim Basin (<1500 m), the second largest modern sand dune desert on Earth. Although some research suggests that the hyper-arid conditions observed today in the Tarim Basin developed by ca. 25 Ma, stratigraphic evidence suggests the first erg system did not appear until 12.2 Ma. To address this controversy and to understand the tectonic influences on climate in Central Asia, we studied a continuous, 3800-m-thick stratigraphic section deposited from 15.1 to 0.9 Ma now exposed within the western Kepintagh fold-and-thrust belt in the southern Tian Shan foreland. We present new detrital zircon data (n = 839), new carbonate oxygen (δ18Oc) and carbon (δ13Cc) stable isotope compositions (n = 368), structural modeling, and stratigraphic observations, and combine these data with recently published magnetostratigraphy and regional studies to reconstruct the history of deposition, deformation, and climate change in the northwestern Tarim Basin. We find that basins along the southern (this study) and northern (i.e., Ili Basin) margins of the Tian Shan were likely receiving similar westerly precipitation by 15 Ma (δ18Oc = ∼−8‰) and had similar lacustrine-playa environments at ca. 13.5 Ma, despite differences in sedimentary provenance. At ca. 12 Ma, an erg desert formed adjacent to the southern Tian Shan in the northwestern Tarim Basin, coincident with a mid- to late Miocene phase of deformation and exhumation within both the Pamir and southern Tian Shan. Desertification at ca. 12 Ma was marked by a negative δ18Oc excursion from −7.8 ± 0.4‰ to −8.7 ± 0.7‰ in the southern Tian Shan foreland (this study), coeval with a negative δ18Oc excursion (∼−11 to −13‰) in the Tajik Basin, west of the Pamir. These data suggest that only after ca. 12 Ma did the Pamir-Tian Shan create a high-elevation barrier that effectively blocked westerly moisture, forming a rain shadow in the northwestern Tarim Basin. After 7 Ma, the southern Tian Shan foreland migrated southward as this region experienced widespread deformation. In our study area, rapid shortening and deformation above two frontal foreland faults initiated between 6.0 and 3.5 Ma resulted in positive δ13Cc excursions to values close to 0‰, which is interpreted to reflect exhumation in the Tian Shan and recycling of Paleozoic carbonates. Shortening led to isolation of the study site as a piggy-back basin by 3.5 Ma, when the sediment provenance was limited to the exhumed Paleozoic basement rocks of the Kepintagh fold belt. The abrupt sedimentologic and isotopic changes observed in the southern Tian Shan foreland appear to be decoupled from late Cenozoic global climate change and can be explained entirely by local tectonics. This study highlights how tectonics may overprint the more regional and global climate signals in active tectonic settings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.