We present dynamic tuning and symmetry lowering of Fano resonances in gold heptamers accomplished by applying uniaxial mechanical stress. The flexible heptamer structure was obtained by embedding the seven-gold-nanocylinder complex in a polydimethylsiloxane membrane. Under uniaxial stress, the Fano resonance exhibited opposite spectral shifts for the two orthogonal polarizations parallel and perpendicular to the mechanical stress. Furthermore, a new resonance was observed for polarization parallel to the mechanical stress but not for the perpendicular polarization. The experimental results showed good agreement with the numerical simulations. A detailed group theoretical analysis showed that the symmetry lowering caused by the mechanical stress not only splits the originally degenerate mode but also modifies the originally optically inactive mode into an optically active mode, which then interacts strongly with a closely spaced mode and exhibits anticrossing behavior. The symmetry tuning enabled by applying mechanical stress is a simple and efficient way to engineer the nature of coupled plasmon resonances in complex nanostructures. The mechanically tunable plasmonic nanostructures also provide an excellent platform for dynamically tunable nanophotonic devices such as tunable filters and sensors.
Strontium-doped hydroxyapatite (Ca9Sr1(PO4)6(OH)2, Sr1-HA) nanorods with different lateral spacing (e.g., interrod spacing) values (67.3 ± 3.8, 95.7 ± 4.2, and 136.8 ± 8.7 nm) and nanogranulates were grown on microarc-oxidized microporous TiO2, respectively, to form multilayer coatings. The coatings reveal two kinds of micro/nanoscaled hierarchical surfaces with a similar microscale roughness, e.g., nanogranulated 2D pattern and nanorod-shaped 3D pattern in nanotopography. When hFOB1.19 cells are employed, the proliferation and differentiation of osteoblasts on the coatings were evaluated by examining MTT assay, expressions of osteogenesis-related genes [alkaline phosphatase (ALP), runt-related transcription factor 2, osterix, osteopontin (OPN), osteocalcin (OCN), and collagen I (Col-I)], ALP activity, contents of intracellular Ca(2+), Col-I, OPN, and OCN, extracellular collagen secretion, and extracellular matrix mineralization. The results reveal that the proliferation and differentiation of osteoblasts can be directly regulated by the interrod spacing of the Sr1-HA nanorods, which are significantly enhanced on the nanorod-shaped 3D patterns with interrod spacing smaller than 96 nm and more pronounced with decreasing the interrod spacing but inhibited on the nanorods with spacing larger than 96 nm compared to the nanogranulated 2D pattern. The difference in the cellular activity is found to be related with the intracellular Ca(2+) concentrations, which are regulated by variation of the surface topology of Sr1-HA crystals. Our work provides insight to the surface structural design of a biomedical implant favoring osteointegration.
Advanced multifunction titanium (Ti) based bone implant with antibacterial, angiogenic and osteogenic activities is stringently needed in clinic, which may be accomplished via incorporation of proper inorganic bioactive elements. In this work, microporous TiO2/calcium-phosphate coating on Ti doped with strontium, cobalt and fluorine (SCF-TiCP) was developed, which had a hierarchical micro/nano-structure with a microporous structure evenly covered with nano-grains. SCF-TiCP greatly inhibited the colonization and growth of both gram-positive and gram-negative bacteria. No cytotoxicity appeared for SCF-TiCP. Furthermore, SCF-TiCP stimulated the expression of key angiogenic factors in rat bone marrow stem cells (MSCs) and dramatically enhanced MSC osteogenic differentiation. The in vivo animal test displayed that SCF-TiCP induced more new bone and tighter implant/bone bonding. In conclusion, multifunction SCF-TiCP of antibacterial, angiogenic and osteogenic activities is a promising orthopedic and dental Ti implant coating for improved clinical performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.