Video conferencing is one of the advanced technologies for users that allows online communication despite long distances. High quality communication and ongoing support for the principles of video conferencing service that can be achieved through Software-Defined Networking (SDN). SDN is a new architecture for computer networks that separates the control plane from the data plane to improve network resources and reduce operating costs. All routing decisions and control mechanisms are made by a device called a controller. Traffic engineering can be well implemented in SDN because the entire network topology is known to the controller. Considering SDN features, user requests can be dynamically routed according to current network status and Quality of Service (QoS) requirements. In general, the purpose of SDN routing algorithms is to maximize the acceptance rate of user requests by considering QoS requirements. In this literature, most routing studies to provide satisfactory video conferencing services have focused solely on bandwidth. Nevertheless, some studies have considered both delay and bandwidth constraints. In this paper, a Fuzzy Delay-Bandwidth Guaranteed Routing (FDBGR) algorithm is proposed that considers both delay and bandwidth constraints in routing. The proposed fuzzy system is based on rules that can postpone requests with high resource demands. Also, the purpose of the FDBGR is to distribute the network workload evenly for all requests, where this is done by maintaining the capacity to accept future requests. The combination of conventional routing algorithms and SDN provides remarkable improvements in mobility, scalability and the overall performance of the networks. Simulations are performed on different scenarios to evaluate the performance of the FDBGR compared to state-of-the-art methods. Besides, FDBGR has been compared with a number of most related previous works such as H-MCOP, MH-MCOP, QoMRA, QROUTE and REDO based on criteria such as number of accepted requests, average path length, energy consumption, load balancing, and average delay. The simulation results clearly prove the superiority of the proposed algorithm with an average delay of 48 ms in different topologies for video conferencing applications.
The traffic accident is a major hazard in modern society. Automotive anti-collision system is an advanced security technology based on intelligent transportation system. Researchers worldwide have carried out relevant studies which are helpful to improve the road traffic safety and reduce the rate of traffic accident. In this paper, first functions of each part of the system are modelled to form the model of the whole part. According to the characteristics of automotive dynamics system and the characteristics of actuator structure, dynamics model of automatic anti-collision system are developed to simulate the complex process of the vehicle mobility. Some functions of the developed system are verified by simulation using Matlab. The system shows good control on the vehicle speed and safety stopping distance.
The fault detection and alarm system designed in this paper, which can be used in home, including a series of structures such as fault detector, cooling plate, support plate, controller, voice chip, voice player, alarm lamp, cooling fin, etc, is convenient for users to obtain fault alarm information effectively and carry out maintenance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.