Here we present a simple and low-cost production method to generate paper-based microfluidic devices with wax for portable bioassay. The wax patterning method we introduced here included three different ways: (i) painting with a wax pen, (ii) printing with an inkjet printer followed by painting with a wax pen, (iii) printing by a wax printer directly. The whole process was easy to operate and could be finished within 5-10 min without the use of a clean room, UV lamp, organic solvent, etc. Horse radish peroxidase, BSA and glucose assays were conducted to verify the performance of wax-patterned paper.
Paper-based microfluidics is a promising technology to develop a simple, low-cost, portable, and disposable diagnostic platform for resource-limited settings. Here we report the fabrication of paper-based microfluidic devices in nitrocellulose membrane by wax printing for protein immobilization related applications. The fabrication process, which can be finished within 10 min, includes mainly printing and baking steps. Wax patterning will form hydrophobic regions in the membrane, which can be used to direct the flow path or separate reaction zones. The fabrication parameters like printing mode and baking time were optimized, and performances of the wax-patterned nitrocellulose membrane such as printing resolution, protein immobilization, and sample purification capabilities were also characterized in this report. We believe the wax-patterned nitrocellulose membrane will enhance the capabilities of paper microfluidic devices and bring new applications in this field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.