Cloud radio access network (C-RAN) aims to improve spectrum and energy efficiency of wireless networks by migrating conventional distributed base station functionalities into a centralized cloud baseband unit (BBU) pool. We propose and investigate a cross-layer resource allocation model for C-RAN to minimize the overall system power consumption in the BBU pool, fiber links and the remote radio heads (RRHs). We characterize the cross-layer resource allocation problem as a mixed-integer nonlinear programming (MINLP), which jointly considers elastic service scaling, RRH selection, and joint beamforming. The MINLP is however a combinatorial optimization problem and NP-hard. We relax the original MINLP problem into an extended sum-utility maximization (ESUM) problem, and propose two different solution approaches. We also propose a low-complexity Shaping-and-Pruning (SP) algorithm to obtain a sparse solution for the active RRH set. Simulation results suggest that the average sparsity of the solution given by our SP algorithm is close to that obtained by a recently proposed greedy selection algorithm, which has higher computational complexity. Furthermore, our proposed cross-layer resource allocation is more energy efficient than the greedy selection and successive selection algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.