In non-small-cell lung carcinoma (NSCLC), aberrant activation of mammalian target of rapamycin (mTOR) contributes to tumorigenesis and cancer progression. PQR620 is a novel and highly-potent mTOR kinase inhibitor. We here tested its potential activity in NSCLC cells. In primary human NSCLC cells and established cell lines (A549 and NCI-H1944), PQR620 inhibited cell growth, proliferation, and cell cycle progression, as well as cell migration and invasion, while inducing significant apoptosis activation. PQR620 disrupted assembles of mTOR complex 1 (mTOR-Raptor) and mTOR complex 2 (mTOR-Rictor-Sin1), and blocked Akt, S6K1, and S6 phosphorylations in NSCLC cells. Restoring Akt-mTOR activation by a constitutively-active Akt1 (S473D) only partially inhibited PQR620-induced cytotoxicity in NSCLC cells. PQR620 was yet cytotoxic in Akt1/2-silenced NSCLC cells, supporting the existence of Akt-mTOR-independent mechanisms. Indeed, PQR620 induced sphingosine kinase 1 (SphK1) inhibition, ceramide production and oxidative stress in primary NSCLC cells. In vivo studies demonstrated that daily oral administration of a single dose of PQR620 potently inhibited primary NSCLC xenograft growth in severe combined immune deficient mice. In PQR620-treated xenograft tissues, Akt-mTOR inactivation, apoptosis induction, SphK1 inhibition and oxidative stress were detected. In conclusion, PQR620 exerted potent anti-NSCLC cell activity via mTOR-dependent and -independent mechanisms.
Activation of adenosine monophosphate-activated protein kinase (AMPK) is able to produce significant anti-non-small cell lung cancer (NSCLC) cell activity. ASP4132 is an orally active and highly effective AMPK activator. The current study tested its activity against NSCLC cells. In primary NSCLC cells and established cell lines (A549 and NCI-H1944) ASP4132 potently inhibited cell growth, proliferation and cell cycle progression as well as cell migration and invasion. Robust apoptosis activation was detected in ASP4132-treated NSCLC cells. Furthermore, ASP4132 treatment in NSCLC cells induced programmed necrosis, causing mitochondrial p53-cyclophilin D (CyPD)-adenine nucleotide translocase 1 (ANT1) association, mitochondrial depolarization and medium lactate dehydrogenase release. In NSCLC cells ASP4132 activated AMPK signaling, induced AMPKα1-ACC phosphorylation and increased AMPK activity. Furthermore, AMPK downstream events, including mTORC1 inhibition, receptor tyrosine kinases (PDGFRα and EGFR) degradation, Akt inhibition and autophagy induction, were detected in ASP4132-treated NSCLC cells. Importantly, AMPK inactivation by AMPKα1 shRNA, knockout (using CRISPR/Cas9 strategy) or dominant negative mutation (T172A) almost reversed ASP4132-induced anti-NSCLC cell activity. Conversely, a constitutively active AMPKα1 (T172D) mimicked and abolished ASP4132-induced actions in NSCLC cells. In vivo, oral administration of a single dose of ASP4132 largely inhibited NSCLC xenograft growth in SCID mice. AMPK activation, mTORC1 inhibition and EGFR-PDGFRα degradation as well as Akt inhibition and autophagy induction were detected in ASP4132-treated NSCLC xenograft tumor tissues. Together, activation of AMPK by ASP4132 potently inhibits NSCLC cell growth in vitro and in vivo.
The expression and biological function of the mitochondrial inner membrane protease YME1L (YME1 Like 1 ATPase) in NSCLC are tested here. Bioinformatical analyses and results from local human tissues show that YME1L expression is elevated in NSCLC tissues. YME1L upregulation was observed in primary and immortalized NSCLC cells. In NSCLC cells, shRNA-mediated silence of YME1L or dCas9/sgRNA-induced knockout (KO) of YME1L robustly suppressed cell growth and migration, and provoking apoptosis. YME1L shRNA/KO resulted in mitochondrial dysfunctions in NSCLC cells, leading to mitochondrial depolarization, ROS accumulation and ATP depletion. Conversely, ectopic YME1L overexpression augmented NSCLC cell proliferation and motility. Akt-S6K1 phosphorylation was reduced after YME1L shRNA/KO in primary NSCLC cells, but augmented after YME1L overexpression. Importantly, YME1L KO-caused anti-NSCLC cell activity was attenuated by a constitutively-activate Akt1 (S473D) construct. In vivo , subcutaneous NSCLC xenograft growth was remarkably slowed following intratumoral YME1L shRNA AAV injection in nude mice. YME1L knockdown, Akt-mTOR inactivation and ATP reduction were detected in YME1L-silenced NSCLC xenografts. Taken together, overexpressed YME1L in NSCLC exerts pro-tumorigenic function.
The purpose of this study is to explore the antitumor properties of resibufogenin (RB) in non‐small cell lung cancer (NSCLC) and elucidate its underlying mechanism. A549 and H520 cells were treated with various concentrations of RB with or without NLRP3 inhibitor (MCC950), caspase‐1 inhibitor (VX765), or N‐acetyl‐l‐cysteine (an ROS scavenger). Cell counting kit‐8 and colony formation assays were conducted to determine cell viability. Cell invasion was detected by using the transwell assay. The release of lactate dehydrogenase (LDH) was determined by the LDH detection assay. The protein expression levels of related genes were measured by western blotting and immunohistochemistry. The reactive oxygen species (ROS) level was detected by using a 2,7‐dichlorodihydrofluorescein diacetate ROS Assay Kit. The in vivo effects of RB were evaluated in a xenograft mouse model. RB treatment reduced cell viability and invasion in a dose‐dependent manner. Furthermore, RB also enhanced pyroptosis levels in A549 and H520 cells, as indicated by the increased release of LDH and pyroptosis‐related proteins. Interestingly, we also found that the antiproliferative and antimetastatic effects of RB were alleviated by the blockade of pyroptosis using NLRP3 inhibitor MCC950. Further study demonstrated that RB induced pyroptosis in a caspase‐1‐dependent manner, as evidenced by the finding that VX765 effectively reversed the effects of RB on A549 and H520 cells. We also found that RB could trigger caspase‐1‐dependent pyroptosis through ROS‐mediated NF‐κB suppression. In summary, our findings provide a potential antitumor agent and a novel insight into the mechanism of RB treatment of NSCLC.
We hypothesized that in mild bronchiectasis patients, increased systemic inflammation and redox imbalance may take place and correlate with clinical parameters. In plasma samples from patients with very mild bronchiectasis, inflammatory cells and molecules and redox balance parameters were analyzed. In the patients, lung function and exercise capacity, nutritional status, bacterial colonization, and radiological extension were assessed. Correlations between biological and clinical variables were determined. Compared to healthy controls, levels of acute phase reactants, neutrophils, IgG, IgA, myeloperoxidase, protein oxidation, and GSH increased and lung function and exercise capacity were mildly reduced. GSH levels were even greater in ex-smoker and Pseudomona-colonized patients. Furthermore, radiological extension inversely correlated with airway obstruction and, disease severity, and positively correlated with neutrophil numbers in mild bronchiectasis patients with no nutritional abnormalities. In stable patients with mild bronchiectasis, several important inflammatory and oxidative stress events take place in plasma. These findings suggest that the extension of bronchiectasis probably plays a role in the development of redox imbalance and systemic inflammation in patients with mild bronchiectasis. These results have therapeutic implications in the management of bronchiectasis patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.