Well-defined periodic mesostructures of hydrophilic ultrathin Te nanowires with aspect ratios of at least 10(4) can be produced by the Langmuir-Blodgett technique without any extra hydrophobic pretreatment or functionalization. Packing the arrayed nanowire monolayers will allow construction of nanomesh-like mesostructures or more complex multilayered structures composed of ultrathin nanowires on a planar substrate. The well-organized monolayer of Te nanowires with periodic mesostructures can be readily used as a stamp to transfer such mesostructured nanopatterns to other substrates or can be embedded within a polymer matrix. The mesostructures of ultrathin Te nanowire films show reversibly switched photoelectric properties between the lower- and higher-conductivity states when the light is off and on, and the photocurrent is influenced by the light intensity and the number of mesostructured nanowire monolayer films. This method can be extended for fabrication of other mesostructured assemblies of ultrathin nanowires or nanotubes.
The origin of complex superstructures of biomaterials in biological systems and the amazing self-assembly mechanisms of their emergence have attracted a great deal of attention recently. Mimicking nature, diverse kinds of hydrophilic polymers with different functionalities and organic insoluble matrices have been designed for the morphogenesis of inorganic crystals. In this Research News, emerging new strategies for morphogenesis and controlled crystal growth of minerals, that is, selective adsorption and mesoscale transformation for highly ordered superstructures, the combination of a synthetic hydrophilic polymer with an insoluble matrix, a substrate, or the air/solution interface, and controlled crystallization in a mixed solvent are highlighted. It is shown that these new strategies can be even further extended to morphogenesis and controlled crystallization of diverse inorganic or inorganic-organic hybrid materials with structural complexity, structural specialties, and improved functionalities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.