Consider estimation of a population mean of a response variable when the observations are missing at random with respect to the covariate. Two common approaches to imputing the missing values are the nonparametric regression weighting method and the Horvitz-Thompson (HT) inverse weighting approach. The regression approach includes the kernel regression imputation and the nearest neighbor imputation. The HT approach, employing inverse kernelestimated weights, includes the basic estimator, the ratio estimator and the estimator using inverse kernel-weighted residuals. Asymptotic normality of the nearest neighbor imputation estimators is derived and compared to kernel regression imputation estimator under standard regularity conditions of the regression function and the missing pattern function. A comprehensive simulation study shows that the basic HT estimator is most sensitive to discontinuity in the missing data patterns, and the nearest neighbors estimators can be insensitive to missing data patterns unbalanced with respect to the distribution of the covariate. Empirical studies show that the nearest neighbor imputation method is most effective among these imputation methods for estimating a finite population mean and for classifying the species of the iris flower data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.