Methotrexate (MTX) is a first-line treatment for rheumatoid arthritis (RA), but its clinical use is greatly limited by the adverse effects and poor patient compliance caused by traditional oral administration or injection. In recent years, some transdermal drug delivery systems have received considerable attention due to overcoming these shortcomings. In this study, we developed dissolving microneedle patch (DMNP) for transdermal delivery of MTX to treat RA safely and effectively. The morphology, mechanical strength, skin insertion, drug content, in vitro transdermal delivery, and other properties of DMNP were characterized. Meanwhile, the adjuvant-induced arthritis model of rats was established to investigate the therapeutic effect of MTX-loaded DMNP in vivo. The results showed that the microneedles had excellent morphology with neat array and complete needles, good puncture performance and mechanical strength, and rapid intradermal dissolution rate. In vitro transdermal delivery results indicated that microneedles could significantly increase drug transdermal permeation compared with the cream group. The pharmacological study showed that MTX-loaded DMNP significantly alleviated paw swelling, inhibit inflammatory response via downregulating the levels of TNF-α and IL-1β, relieved synovium destruction with less cartilage erosion, and slowed the progression of RA in AIA rats. Besides, DMNP presented better therapeutic performance than cream or intragastric administration at the same dosage of MTX. In conclusion, the MTX-loaded dissolving microneedle patch has advantages of safety, convenience, and high efficacy over conventional administrations, laying a foundation for the transdermal drug delivery system treatment of rheumatoid arthritis.
The specific recognition of cancer cells by the body's immune system is an essential step in initiating antitumor immunity. However, the decreased expression of major histocompatibility complex class I (MHC-1) and overexpression of programmed death ligand 1 (PD-L1) causes insufficient tumor-associated antigens presentation and inactivation of T cells, which accounts for poor immunogenicity. To remodel tumor immunogenicity, herein, a dual-activatable binary CRISPR nanomedicine (DBCN) that can efficiently deliver a CRISPR system into tumor tissues and specifically control its activation is reported. This DBCN is made of a thioketal-cross-linked polyplex core and an acid-detachable polymer shell, which can maintain stability during blood circulation, while detaching a polymer shell to facilitate the cellular internalization of the CRISPR system after entering tumor tissues and ultimately activating gene editing under exogenous laser irradiation, thereby maximizing the therapeutic benefits and reducing potential safety concerns. With the collaborative application of multiple CRISPR systems, DBCN efficiently corrects both dysregulation of MHC-1 and PD-L1 expression in tumors, thus initiating robust T celldependent antitumor immune responses to inhibit malignant tumor growth, metastasis, and recurrence. Given the increasing abundance of CRISPR toolkits, this research provides an appealing therapeutic strategy and a universal delivery platform to develop more advanced CRISPR-based cancer treatments.
The clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR‐related protein 9 (Cas9) genome editing system has attracted much attention due to its powerful genome editing capacity. However, CRISPR‐Cas9 components are easily degraded by acids, enzymes, and other substances in the body fluids after entering the organism, thus efficiently delivering the CRISPR‐Cas9 system into targeted organs or cells has been a central theme for promoting the application of CRISPR‐Cas9 technology. Although several physical methods and viral vectors have been developed for CRISPR‐Cas9 delivery, their clinical application still suffers from disadvantages, such as the risks of mutagenesis, cell damage, and poor specificity. As an alternative, non‐viral nanocarriers hold great promise for circumventing these challenges. Furthermore, with aim to realize more efficient and precise genome editing and reduce the undesirable side effects, stimuli‐responsive nanocarriers are designed for the spatiotemporal CRISPR‐Cas9 delivery in responsive to various stimuli. In this review, we will summarize the recent progress in delivery strategies for CRISPR‐Cas9 genome editing. The mechanisms and advantages of these strategies were reviewed, providing a comprehensive review of the rational design of materials and techniques for efficient and precise genome editing. At last, the potential challenges of current CRISPR‐Cas9 delivery are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.