The dissemination, seeding, and colonization of circulating tumor cells (CTCs) serve as the root of distant metastasis. As a key step in the early stage of metastasis formation, colonization of CTCs in the (pre-)metastatic niche appears to be a valuable target. Evidence showed that inflammatory neutrophils possess both a CTC- and niche-targeting property by the intrinsic cell adhesion molecules on neutrophils. Inspired by this mechanism, we developed a nanosize neutrophil-mimicking drug delivery system (NM-NP) by coating neutrophils membranes on the surface of poly(latic-co-glycolic acid) nanoparticles (NPs). The membrane-associated protein cocktails on neutrophils membrane were mostly translocated to the surface of NM-NP via a nondisruptive approach, and the biobinding activity of neutrophils was highly preserved. Compared with uncoated NP, NM-NP exhibited enhanced cellular association in 4T1 cell models under shear flow in vitro, much higher CTC-capture efficiency in vivo, and improved homing to the premetastatic niche. Following loading with carfilzomib, a second generation of proteasome inhibitor, the NM-NP-based nanoformulation (NM-NP-CFZ) selectively depleted CTCs in the blood, prevented early metastasis and potentially inhibited the progress of already-formed metastasis. Our NP design can neutralize CTCs in the circulation and inhibit the formation of a metastatic niche.
The structural complexity of nucleosomes underlies their functional versatility. Here we report a new type of complexity—nucleosome fragility, manifested as high sensitivity to micrococcal nuclease, in contrast to the common presumption that nucleosomes are similar in resistance to MNase digestion. Using differential MNase digestion of chromatin and high-throughput sequencing, we have identified a special group of nucleosomes termed “fragile nucleosomes” throughout the yeast genome, nearly 1000 of which were at previously determined “nucleosome-free” loci. Nucleosome fragility is broadly implicated in multiple chromatin processes, including transcription, translocation, and replication, in correspondence to specific physiological states of cells. In the environmental-stress-response genes, the presence of fragile nucleosomes prior to the occurrence of environmental changes suggests that nucleosome fragility poises genes for swift up-regulation in response to the environmental changes. We propose that nucleosome fragility underscores distinct functional statuses of the chromatin and provides a new dimension for portraying the landscape of genome organization.
Chromosome segregation in mitosis is orchestrated by protein kinase signaling cascades. A biochemical cascade named spindle checkpoint ensures the spatial and temporal order of chromosome segregation during mitosis. Here we report that spindle checkpoint protein MAD1 interacts with NEK2A, a human orthologue of the Aspergillus nidulans NIMA kinase. MAD1 interacts with NEK2A in vitro and in vivo via a leucine zipper-containing domain located at the C terminus of MAD1. Like MAD1, NEK2A is localized to HeLa cell kinetochore of mitotic cells. Elimination of NEK2A by small interfering RNA does not arrest cells in mitosis but causes aberrant premature chromosome segregation. NEK2A is required for MAD2 but not MAD1, BUB1, and HEC1 to associate with kinetochores. These NEK2A-eliminated or -suppressed cells display a chromosome bridge phenotype with sister chromatid inter-connected. Moreover, loss of NEK2A impairs mitotic checkpoint signaling in response to spindle damage by nocodazole, which affected mitotic escape and led to generation of cells with multiple nuclei. Our data demonstrate that NEK2A is a kinetochore-associated protein kinase essential for faithful chromosome segregation. We hypothesize that NEK2A links MAD2 molecular dynamics to spindle checkpoint signaling.Chromosome movements during mitosis are governed by the interaction of spindle microtubules with a specialized chromosome domain located within the centromere. This specialized region, called the kinetochore (1, 2), is the site for spindle microtubule-centromere association. In addition to providing a physical link between chromosomes and spindle microtubules, the kinetochore has an active function in chromosomal segregation through microtubule motors and spindle checkpoint sensors located at or near it (3-5).Several lines of evidence have implicated the kinetochore in generation of a diffusible checkpoint signal that can block cell cycle progression into anaphase until all kinetochores have successfully attached to spindle microtubules. Delayed attachment of one or more chromosomes to the spindle is correlated with a corresponding delay in the onset of anaphase. For mutants that fail to arrest the cell cycle in mitosis after disassembly of microtubules in budding yeast, genetic screen has identified three MAD (mitotic arrest deficiency) and three BUB (budding uninhibited by benomyl) genes (7). Vertebrate homologues of MAD1 (8), MAD2 (9 -10), BUB3 (11-12), BUB1, and BUBR1 (13-15) are spindle checkpoint components transiently associated with kinetochore. Expression of the kinetochore binding domain of murine BUB1 (13) or injection of antibodies against BUBR1 (15) results in premature onset of anaphase, presumably by replacement of the endogenous proteins at kinetochores. Collectively, these data indicate that binding of these spindle checkpoint components at the kinetochores may generate a signal in response to spindle defects and/or aberrant kinetochore protein-protein interactions.Mitosis is orchestrated by signaling cascades that coordinate mitotic p...
Treatment of glioblastoma (GBM) remains to be the most formidable challenge because of the hindrance of the blood-brain barrier (BBB) along with the poor drug penetration into the glioma parenchyma. Nanoparticulate drug delivery systems (DDS) utilizing transferrin (Tf) as the targeting ligand to target the glioma-associated transferrin receptor (TfR) had met the problem of loss of specificity in biological environment due to the high level of endogenous Tf. Here we conjugated CRT peptide, an iron-mimicry moiety targeting the whole complex of Tf/TfR, to poly(ethylene glycol)-poly(l-lactic-co-glycolic acid) nanoparticles (CRT-NP), to open a new route to overcome such obstacle. High cellular associations, advanced transport ability through the BBB model, and penetration in 3-dimensional C6 glioma spheroids in vitro had preliminarily proved the advantages of CRT-NP over Tf-nanoparticle conjugates (Tf-NP). Compared with Tf-NP, NP, and Taxol, paclitaxel-loaded CRT-NP (CRT-NP-PTX) displayed a superior antiproliferation effect on C6 glioma cells and stronger inhibitory effect on glioma spheroids. Favored pharmacokinetics behavior and enhanced accumulation in glioma foci was observed, together with a much deeper distribution pattern in glioma parenchyma compared with unmodified nanoparticles and Tf-NP. Eventually, mice treated with CRT-NP-PTX showed a remarkably prolonged median survival compared to those treated with Taxol, NP, or Tf-NP. In conclusion, the modification of CRT to nanoparticles holds great promise for enhancement of antiglioma therapy.
Advances in active targeting drug delivery system (DDS) have revolutionized glioma diagnosis and therapy. However, the lack of the sufficient targets on glioma cells and limited penetration capability of DDS have significantly compromised the treatment efficacy. In this study, by taking advantages of the abundant extracellular matrix-derived heparan sulfate proteoglycan (HSPG) and enhanced tumor penetration ability mediated by neuropilin-1 (NRP-1) protein, we reported the ATWLPPR and CGKRK peptide dual-decorated nanoparticulate DDS (designated AC-NP) to achieve angiogenic blood vessels and tumor microenvironment dual-targeting effect. The resulted AC-NP displayed the particle size of 123 ± 19.47 nm. Enhanced cellular association of AC-NP was achieved on HUVEC cells and U87MG cells. AC-NP was internalized via caveolin- and lipid raft-mediated mechanism with the involvement of energy and lysosome in HUVEC cells and via caveolin- and lipid raft-mediated pathway with the participation of energy, microtubulin, and lysosome in U87MG cells. After loading with anticancer drug, paclitaxel (PTX), the enhanced apoptosis induction and antiproliferative activity were achieved by AC-NP. Furthermore, in vitro U87MG tumor spheroids assays showed a deeper penetration and an enhanced inhibitory effect against the U87MG tumor spheroids achieved by AC-NP. In vivo animal experiment showed that decoration of AC peptide on the nanoparticulate DDS resulted in extensive accumulation at glioma site and improved anti-glioma efficacy. Collectively, the results suggested that AC-NP holds great promise to serve as an effective tumor blood vessel and tumor microenvironment dual-targeting DDS with enhanced penetration capability, holding great potential in improving anti-glioma efficacy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.