Background Inactivated vaccines are limited in preventing foot-and-mouth disease (FMD) due to safety problems. Recombinant virus-like particles (VLPs) are an excellent candidate for a novel vaccine for preventing FMD, given that VLPs have similar immunogenicity as natural viruses and are replication- and infection-incompetent. Objectives The 3C protease and P1 polyprotein of type O FMD virus (FDMV) was expressed in yeast Hansenula polymorpha to generate self-resembling VLPs, and the potential of recombinant VLPs as an FMD vaccine was evaluated. Methods BALB/c mice were immunized with recombinant purified VLPs using CpG oligodeoxynucleotide and aluminum hydroxide gel as an adjuvant. Cytokines and lymphocytes from serum and spleen were analyzed by enzyme-linked immunosorbent assay, enzyme-linked immunospot assay, and flow cytometry. Results The VLPs of FMD were purified successfully from yeast protein with a diameter of approximately 25 nm. The immunization of mice showed that animals produced high levels of FMDV antibodies and a higher level of antibodies for a longer time. In addition, higher levels of interferon-γ and CD4 + T cells were observed in mice immunized with VLPs. Conclusions The expression of VLPs of FMD in H. polymorpha provides a novel strategy for the generation of the FMDV vaccine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.