We report on a significant power conversion efficiency improvement of perovskite solar cells from 8.81% to 10.15% due to insertion of an ultrathin graphene quantum dots (GQDs) layer between perovskite and TiO2. A strong quenching of perovskite photoluminescence was observed at ∼760 nm upon the addition of the GQDs, which is pronouncedly correlated with the increase of the IPCE and the APCE of the respective cells. From the transient absorption measurements, the improved cell efficiency can be attributed to the much faster electron extraction with the presence of GQDs (90-106 ps) than without their presence (260-307 ps). This work highlights that GQDs can act as a superfast electron tunnel for optoelectronic devices.
Single-atom catalysts anchoring offers a desirable pathway for efficiency maximization and cost-saving for photocatalytic hydrogen evolution. However, the single-atoms loading amount is always within 0.5% in most of the reported due to the agglomeration at higher loading concentrations. In this work, the highly dispersed and large loading amount (>1 wt%) of copper single-atoms were achieved on TiO2, exhibiting the H2 evolution rate of 101.7 mmol g−1 h−1 under simulated solar light irradiation, which is higher than other photocatalysts reported, in addition to the excellent stability as proved after storing 380 days. More importantly, it exhibits an apparent quantum efficiency of 56% at 365 nm, a significant breakthrough in this field. The highly dispersed and large amount of Cu single-atoms incorporation on TiO2 enables the efficient electron transfer via Cu2+-Cu+ process. The present approach paves the way to design advanced materials for remarkable photocatalytic activity and durability.
Direct and efficient oxidation of methane to methanol and the related liquid oxygenates provides a promising pathway for sustainable chemical industry, while still remaining an ongoing challenge owing to the dilemma between methane activation and overoxidation. Here, ZnO with highly dispersed dual Au and Cu species as cocatalysts enables efficient and selective photocatalytic conversion of methane to methanol and one-carbon (C1) oxygenates using O 2 as the oxidant operated at ambient temperature. The optimized AuCu−ZnO photocatalyst achieves up to 11225 μmol•g −1 •h −1 of primary products (CH 3 OH and CH 3 OOH) and HCHO with a nearly 100% selectivity, resulting in a 14.1% apparent quantum yield at 365 nm, much higher than the previous best photocatalysts reported for methane conversion to oxygenates. In situ EPR and XPS disclose that Cu species serve as photoinduced electron mediators to promote O 2 activation to • OOH, and simultaneously that Au is an efficient hole acceptor to enhance H 2 O oxidation to • OH, thus synergistically promoting charge separation and methane transformation. This work highlights the significances of co-modification with suitable dual cocatalysts on simultaneous regulation of activity and selectivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.