Today’s construction industry is overflowing with new ideas about its future. Off-Site Manufacture and Construction (OSCM) is at the heart of the modern construction industry. Much has been written about the state and context of OSCM in different countries regarding its perceived benefits and barriers to implementation. Off-site production (OSP) plays an important role in improving fragmented construction processes. Although most OSP research targets the attitudes and practices of OSP adoption, there is limited understanding of the philosophical issues underpinning OSP-related architecture. The roles of the architects’ personal philosophies are neglected and this hampers their implementation of OSCM (which has had a largely technical focus). This paper explores the traditional thinking patterns of architects in China and predicts possible future roles for them. It then conceptualizes an “architectural work” mode and a “building product” mode of design and construction and identifies the shortcomings of architects in an OSCM environment. The arguments made are based on practitioners’ perceptions and the first author’s practical experiences of leading several real-life projects in recent years. The findings reveal the implications and significance of the transformation from an “architectural work” mode to a “building product” mode. We foresee a study approach that focuses on the order and rules for OSCM, resulting in architects’ existing mindsets being changed to thinking patterns and design methodologies better suited to OSCM.
PurposeThe purpose of this research is to measure incompatibilities between the manufacturing approaches (MA) used by the manufacturing industries, and those used for the off-site construction (OSC) of buildings. The aim is to explore which of these approaches could be integrated into OSC in a precise manner as viewed by architects as well as how this might occur.Design/methodology/approachAn empirical research and empirical cycle (EC) was adopted as a methodological framework to measure incompatibilities. A combination of quantitative and qualitative mixed methods was explored through a literature-based case study of prefabricated houses and cars, nine real-life projects built by the second author's research team and the first-named author's practical experiences of leading these projects, based on a logic framework derived from the authors’ reflections of their architectural practices.FindingsThe findings quantitatively present the incompatibilities between cars (automobile bodies) and prefabricated houses. Design-related aspects have the most potential for integration (42.3% increment). The key lessons were identified as specific design philosophies and related guidelines for architects.Research limitations/implicationsThe findings are limited to single types of products (cars) and buildings (prefabricated houses) in particular regions. The key lessons just present a preliminary evaluation of the application of the design philosophies and related guidelines in nine real-life projects to comply with word limit constraints.Practical implicationsThis study could help architects and other practitioners to locate and target and alleviated incompatibilities between MA and OSC. It could also precisely identify integration shortcomings to optimize decision-making as well as technical pathways for possible and effective breakthroughs.Social implicationsThis study provides fundamental research as a starting point for further discussion and development. A series of additional in-depth investigations combined with case studies are planned for the future. These could provide alternative study approaches to develop more appropriate architectural design methodologies and more streamlined processes.Originality/valueThe research contributes an alternative architectural perspective when measuring incompatibilities between MA and OSC. The results highlight the implications of precise measurement and provide guidance for architects. These facilitate the effective and successful integration of MA into OSC of buildings and promote the uptake of lean construction (LC) in OSC.
The rapid development of Off-site Construction (OSC) has closely linked it to Lean Construction (LC). The importance of design has been highlighted in LC as the primary means to produce value to clients. However, the adoption of lean thinking is still modest in design. Although most research target the lean design theories and their adoption in LC or OSC, there is limited understanding of terminological and cross-sectoral problems without sufficiently considering the different contexts (incompatibilities) among manufacturing, construction, and architecture, hindering the effective use of lean thinking in the design stage, especially in architectural design. This paper clarifies the OSC architectural design methods and presents how design for manufacture and assembly (DfMA) guidelines are considered as design principles to incorporate lean thinking into OSC architectural design to achieve a constructible design towards lean construction goals in OSC projects. This study shows new insights into the cross-sectoral understanding of incorporating lean design from the manufacturing industry to architectural design. An interdisciplinary study pathway is explored focusing on coordinating lean design and Architectural design to achieve lean management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.