Nesfatin-1 is a novel anorexigenic peptide that possesses antihyperglycemic and cardiovascular effects. We hypothesized that nesfatin-1 has a beneficial protective effect against diabetic cardiomyopathy (DC). We investigated the therapeutic effect of nesfatin-1 on diabetes-associated cardiac dysfunction in the high-fat diet (HFD)/streptozotocin (STZ)-induced diabetic mouse model. We found that the cardiac nesfatin-1 level was lower in diabetic mice than in normal mice. Nesfatin-1 treatment (180 mg/kg/day for two weeks) improved insulin sensitivity and mitigated diabetic dyslipidemia. Nesfatin-1 ameliorated the diabetes-related myocardial hypertrophy and heart dysfunction, as revealed by the reduced hypertrophy index, heart rate, mean arterial pressure (MAP), creatine kinase (CK)-MB, and aspartate aminotransferase (AST) levels. Nesfatin-1 exerted antioxidant and anti-inflammatory activity in diabetic mice, as shown by decreased reactive oxygen species (ROS), oxidative lipid product malondialdehyde (MDA) levels, increased superoxide dismutase (SOD) and glutathione (GSH), decreased cardiac and plasma interleukin-1 β (IL-1β) and tumor necrosis factor-α (TNF-α) levels. Mechanistically, we found that nesfatin-1 inhibited the cardiac p38-MAPK pathway activation and subsequent glucagon-like peptide-1 (GLP-1) level. Collectively, our data shows nesfatin-1 exerted protective effects against diabetic cardiomyopathy. Our study suggests that nesfatin-1 therapy has therapeutic implications against diabetic cardiomyopathy.
Osteoporosis is an age-related systemic bone disease that places a heavy burden on patients and society. In this study, we aimed to investigate the effects of naringin (NAR) on the osteogenic differentiation of human adipose-derived stromal cells (ADSCs). The results demonstrated that NAR pretreatment effectively abated H2O2-induced cell death and ROS accumulation in ADSCs undergoing osteogenic differentiation (ADSCs-OD). In addition, we also observed that the impaired extracellular matrix mineralization and ALP activity in H2O2-stimulated ADSCs-OD were notably rescued by NAR pretreatment. Moreover, the effects of H2O2 exposure on Wnt/β-catenin signaling in ADSCs-OD were largely reversed by NAR pretreatment. Collectively, our findings indicated that NAR could protect ADSCs-OD against H2O2-inhibited osteogenic differentiation.
This research aimed to explore the effect of Licochalcone-A (LCA) combined with Rab23 gene on the proliferation, migration, and invasion of glioma U251 cells through the Wnt/β-catenin signaling pathway. The glioma U251 cell line was taken as the research object, and the Rab23 overexpression plasmid was constructed. According to the treatment method, U251 cells were rolled into blank control group (BC), Rab23 overexpression plasmid transfection group (Rab23), 25 μmol·L−1 LCA treatment group (LCA), and Rab23 overexpression plasmid transfection combined with 25 μmol·L−1 LCA treatment group (Rab23 + LCA). Subsequently, the ability of cell proliferation, migration, and invasion of each group was detected by methyl thiazolyl tetrazolium (MTT) assay, scratch healing test, and Transwell cell invasion test, respectively. Western blot was implemented to detect the expression differences of cell proliferation antigen Ki-67, apoptosis-related proteins Bcl-2 and Bax, and Wnt/β-catenin pathway-related proteins β-catenin, glycogen synthase kinase-3 (GSK3β), Axin2, and c-myc. The results showed the successful construction of Rab23 overexpression and stable transfection U251 cell line. After grouping and treatments, the cell proliferation, migration, and invasion ability of the Rab23 group, LCA group, and Rab23 + LCA group was substantially reduced relative to BC group ( P < 0.05 ). In addition, the cell proliferation, migration, and invasion ability of Rab23 + LCA group decreased relatively more significantly. The expression levels of Ki-67, Bcl-2, β-catenin, and c-myc in the Rab23, LCA, and Rab23 + LCA groups were greatly lower versus those of BC group. Moreover, the protein expression levels of Bax, GSK3β, and Axin2 were considerably increased ( P < 0.05 ), while the expression of protein in Rab23 + LCA group increased notably. These findings indicate that LCA combined with Rab23 gene can inhibit the proliferation, migration, and invasion of glioma U251 cells through the Wnt/β-catenin signaling and can promote cell apoptosis.
The aim of this research was to investigate the predictive role of texture features in computed tomography (CT) images based on artificial intelligence (AI) algorithms for colorectal liver metastases (CRLM). A total of 150 patients with colorectal cancer who were admitted to the hospital were selected as the research objects and randomly divided into three groups with 50 cases in each group. The patients who were found to suffer from the CRLM in the initial examination were included in group A. Patients who were found with CRLM in the follow-up were assigned to group B (B1: metastasis within 0.5 years, 16 cases; B2: metastasis within 0.5–1.0 years, 17 cases; and B3: metastasis within 1.0–2.0 years, 17 cases). Patients without liver metastases during the initial examination and subsequent follow-up were designated as group C. Image textures were analyzed for patients in each group. The prediction accuracy, sensitivity, and specificity of CRLM in patients with six classifiers were calculated, based on which the receiver operator characteristic (ROC) curves were drawn. The results showed that the logistic regression (LR) classifier had the highest prediction accuracy, sensitivity, and specificity, showing the best prediction effect, followed by the linear discriminant (LD) classifier. The prediction accuracy, sensitivity, and specificity of the LR classifier were higher in group B1 and group B3, and the prediction effect was better than that in group B2. The texture features of CT images based on the AI algorithms showed a good prediction effect on CRLM and had a guiding significance for the early diagnosis and treatment of CRLM. In addition, the LR classifier showed the best prediction effect and high clinical value and can be popularized and applied.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.