The creation of superelastic, flexible three-dimensional (3D) graphene-based architectures is still a great challenge due to structure collapse or significant plastic deformation. Herein, we report a facile approach of transforming the mechanically fragile reduced graphene oxide (rGO) aerogel into superflexible 3D architectures by introducing water-soluble polyimide (PI). The rGO/PI nanocomposites are fabricated using strategies of freeze casting and thermal annealing. The resulting monoliths exhibit low density, excellent flexibility, superelasticity with high recovery rate, and extraordinary reversible compressibility. The synergistic effect between rGO and PI endows the elastomer with desirable electrical conductivity, remarkable compression sensitivity, and excellent durable stability. The rGO/PI nanocomposites show potential applications in multifunctional strain sensors under the deformations of compression, bending, stretching, and torsion.
over 30% detailed balance limiting efficiency, as well as to its earth-abundant and environment-benign constituents. [1-3] The increase in power conversion efficiency to a record of 12.6% in the last decade has demonstrated the huge potential of these materials. [4,5] However, as one of the most complicated compound semiconductors, kesterite has much more intricate defect chemistry than its counterparts, Cu(In,Ga)Se 2 (CIGS) and CdTe, [6-8] making the control of intrinsic defects a major challenge. Deep intrinsic defects like Sn Zn antisites and related [Cu Zn +Sn Zn ] clusters act as deep recombination centers, leading to the short carrier lifetime. [7,9,10] Additionally, the large population of defect clusters like [2Cu Zn +Sn Zn ] introduces considerable potential (i.e., band or electrostatic) fluctuation. [11] Consequently, the performance of CZTSSe solar cells are currently stagnated by the large open-circuit voltage (V OC) deficit. [12,13] To address the detrimental intrinsic defects and defect clusters in CZTSSe absorber, multiple strategies have been employed. As suggested by the first-principle calculations, the formation energy of intrinsic defects and Kesterite-based Cu 2 ZnSn(S,Se) 4 semiconductors are emerging as promising materials for low-cost, environment-benign, and high-efficiency thin-film photo voltaics. However, the current state-of-the-art Cu 2 ZnSn(S,Se) 4 devices suffer from cation-disordering defects and defect clusters, which generally result in severe potential fluctuation, low minority carrier lifetime, and ultimately unsatisfactory performance. Herein, critical growth conditions are reported for obtaining high-quality Cu 2 ZnSnSe 4 absorber layers with the formation of detrimental intrinsic defects largely suppressed. By controlling the oxidation states of cations and modifying the local chemical composition, the local chemical environment is essentially modified during the synthesis of kesterite phase, thereby effectively suppressing detrimental intrinsic defects and activating desirable shallow acceptor Cu vacancies. Consequently, a confirmed 12.5% efficiency is demonstrated with a high V OC of 491 mV, which is the new record efficiency of pure-selenide Cu 2 ZnSnSe 4 cells with lowest V OC deficit in the kesterite family by E g /q-Voc. These encouraging results demonstrate an essential route to overcome the long-standing challenge of defect control in kesterite semiconductors, which may also be generally applicable to other multinary compound semiconductors.
Size-resolved airborne particles (9-stages) in urban Xi'an, China, during summer and winter were measured for molecular distributions and stable carbon isotopic compositions of dicarboxylic acids, ketocarboxylic acids, and α-dicarbonyls. To our best knowledge, we report for the first time the size-resolved differences in stable carbon isotopic compositions of diacids and related compounds in continental organic aerosols. High ambient concentrations of terephthalic (tPh, 379 ± 200 ng m(-3)) and glyoxylic acids (ωC(2), 235 ± 134 ng m(-3)) in Xi'an aerosols during winter compared to those in other Chinese cities suggest significant emissions from plastic waste burning and coal combustions. Most of the target compounds are enriched in the fine mode (<2.1 μm) in both seasons peaking at 0.7-2.1 μm. However, summertime concentrations of malonic (C(3)), succinic (C(4)), azelaic (C(9)), phthalic (Ph), pyruvic (Pyr), 4-oxobutanoic (ωC(4)), and 9-oxononanoic (ωC(9)) acids, and glyoxal (Gly) in the coarse mode (>2.1 μm) are comparable to and even higher than those in the fine mode (<2.1 μm). Stable carbon isotopic compositions of the major organics are higher in winter than in summer, except oxalic acid (C(2)), ωC(4), and Ph. δ(13)C of C(2) showed a clear difference in sizes during summer, with higher values in fine mode (ranging from -22.8‰ to -21.9‰) and lower values in coarse mode (-27.1‰ to -23.6‰). The lower δ(13)C of C(2) in coarse particles indicate that coarse mode of the compound originates from evaporation from fine mode and subsequent condensation/adsorption onto pre-existing coarse particles. Positive linear correlations of C(2), sulfate and ωC(2) and their δ(13)C values suggest that ωC(2) is a key intermediate, which is formed in aqueous-phase via photooxidation of precursors (e.g., Gly and Pyr), followed by a further oxidation to produce C(2).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.