Conjugated linoleic acid (CLA), a mixture of isomers of linoleic acid, has previously been shown to be able to decrease porcine subcutaneous (SC) adipose tissue levels while increasing the count of intramuscular (IM) adipose tissue in vivo. However, the underlying mechanisms through which it acts are poorly understood. The objective of this study was to investigate the different effects of CLA on adipogenesis in cultured SC adipose tissue and IM stromal vascular cells obtained from neonatal pigs. As shown here, trans -10, cis -12 CLA decreased the expression of adipocytespecific genes as well as adipose precursor cell numbers and the accumulation of lipid in cultured SC adipose tissue stromal vascular cells. However, the cis -9, trans -11 CLA did not alter adipogenesis in SC cultures. On the other hand, both CLA isomers increased the expression of adipocytespecific genes in IM cultures, together with the increasing accumulation of lipid and Oil Red O-stained cells. Collectively, these data show that CLA decreases SC adipose tissue but increases IM adipose tissue by different regulation of adipocyte-specific gene expression. These results suggest that adipogenesis in IM adipocytes differs from that in SC
Intramuscular fat, the total lipid deposited within skeletal muscle, has been regarded as a potential factor responsible for meat quality in animal production and insulin resistance in humans. The objective of present study was to identify candidate genes which control intramuscular fat accumulation through using animal models. PIC pigs (lean-type) and Rongchang pigs (obese-type) were used. By scanning the mRNA samples of longissimus dorsi muscle with Affymetrix Gene-Chip microarray technology, sus scrofa chloride intracellular channel 5 (CLIC5) was isolated, and its mRNA abundance and protein expression level were reversely related with the intramuscular fat content of pigs. Furthermore, over-expression of CLIC5 dramatically increased the proliferation of 3T3-L1 preadipocytes, while inhibited adipocytic differentiation accompanied by the down-regulation of c/EBPalpha, LPL, and PPARgamma protein. Our results suggest that CLIC5 might be a crucial regulator of adipose accumulation in skeletal muscle of pigs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.