Photothermal bimorph actuators are widely used for smart devices, which are generally operated in a room temperature environment, therefore a low temperature difference for actuation without deteriorating the performance is preferred. The strategy for the actuator is assembling a broadband‐light absorption layer for volume expansion and an additional water evaporation layer for cooling and volume shrinkage on a passive layer. The response time and temperature‐change‐normalized bending speed under NIR, white, and blue light illumination are at the same level of high performance, fast photothermal actuators based on polymer or polymer composites. The classical beam theory and finite element simulations are also conducted to understand the actuation mechanism of the actuator. A new type of light mill is designed based on a wing‐flapping mechanism and a light‐modulated frequency switch. A fast‐walking robot (with a speed of 26 mm s−1) and a fast‐and‐strong mechanical gripper with a large weight‐lifting ratio (≈2142), respectively, are also demonstrated.
Artificial muscles are developed by using twisted natural rubber fiber coated with buckled carbon nanotube sheet, which show tensile and torsional actuations and sensing function via the resistance change by a single electric signal.
Three-phase voltage-source converters (VSCs) are commonly used as power flow interface in AC/DC hybrid power systems. The AC power grid suffers from unpredictable shortcircuit faults and power flow fluctuations, causing undesirable grid voltage dips. The voltage dips may last for a short time or a long duration, and vary the working conditions of VSCs. Due to their nonlinear characteristics, VSCs may enter abnormal operating mode in response to voltage dips. In this paper, the transient response of three-phase VSCs under practical grid voltage dips is studied and a catastrophic bifurcation phenomenon is identified in the system. The converter will exhibit an irreversible instability after the dips. The expanded magnitude of AC reactive current may cause catastrophic consequence for the system. A full order eigenvalue analysis and a reduced order mixed-potentialtheory based analysis are adopted to reveal the physical origin of the large-signal instability phenomenon. The key parameters of the system are identified and the boundaries of instability are located. The bifurcation phenomenon and a set of design-oriented stability boundaries in some chosen parameter space are verified by cycle-by-cycle simulations and experimental measurement on a practical grid-connected VSC prototype.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.