Materials discovery is usually done using high-throughput computational screening. The use of costly and complex direct density functional theory (DFT) simulation methods has been commonly used to determine subtle trends in spin-state ordering and inorganic bonding of inorganic materials and, in general, to predict the electronic structure properties of transition metal complexes. A Gaussian process regression (GPR) framework consisting of four kernel functions is introduced for spin-state splitting estimation through inorganic chemistry-appropriate empirical inputs. To this end, the present study reviewed an extensive range of data values from earlier works. According to statistical analysis, the GPR model showed very good performance. The coefficients of determination were calculated to be 0.986 for the exponential and Matern kernel functions, suggesting the highest predictive power of these methods. Moreover, the sensitivity of output to inputs was measured. Artificial intelligence (AI) helped accurately predict the target values through various input ranges.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.