When a series arc fault occurs in indoor power distribution system, current value of circuit is often less than the threshold of the circuit breaker, but the temperature of arc combustion can be as high as thousands of degrees, which can lead to electrical fire. The arc fault experimental platform is used to collect circuit current data of normal work and arc fault. Five types of loads which are commonly used in indoor distribution system, such as resistive and inductive in series load, resistive load, series motor load, switching power load and eddy current load, are chosen. This paper uses four features of current in time domain, i.e. current average, current pole difference, difference current average and current variance. Ten features of current in frequency domain are extracted by Fast Fourier Transform (FFT). The learning vector quantization neural network (LVQ-NN) is designed to judge the load type. The support vector machine optimized by particle swarm optimization (PSO-SVM) is designed to detect the arc fault. The simulation results show the effectiveness of the proposed method.
In recent years, intelligent fault diagnosis technology with deep learning algorithms has been widely used in industry, and they have achieved gratifying results. Most of these methods require large amount of training data. However, in actual industrial systems, it is difficult to obtain enough and balanced sample data, which pose challenges in fault identification and classification. In order to solve the problems, this paper proposes a data generation strategy based on Wasserstein generative adversarial network and convolutional neural network (WG-CNN), which uses generator and discriminator to conduct confrontation training, expands a small sample set into a high-quality dataset, and uses one-dimensional convolutional neural network (1D-CNN) to learn sample characteristics and classify different fault types. Experimental results over the standard Case Western Reserve University (CWRU) bearing fault diagnosis benchmark dataset showed that the proposed method has obvious and satisfactory fault diagnosis effect with 100% classification accuracy for few-shot learning. In different noise environments, this method also has excellent performance.
Insulated conductors can improve the stability of power transmission and reduce the construction space compared with traditional bare conductors. Therefore, insulated conductors are used more and more in overhead power transmission. However, a major challenge of using insulated overhead conductors (IOC) is that the ordinary protection devices are not able to detect the phase-to-ground faults and something, such as tree branch, hitting conductor events. This may cause an accident such as power failure or electrical fire and result in serious damage. In this paper, a new approach, which is based on Discrete Wavelet Transform (DWT) and Long Short Term Memory network (LSTM) for detecting of IOC fault according to partial discharge, is presented. Firstly, the original signal is denoised by DWT. Secondly, the denoised signal is decomposed and extracted features on different layers by DWT. Finally, IOC fault is detected by LSTM. This method can improve the detection accuracy of IOC fault which is tested on the ENET public data set and compared with other classification methods. INDEX TERMS Insulated overhead conductors, partial discharge, discrete wavelet transform, long short term memory network, fault detection.
Self-organizing feature map (SOM) neural network is a kind of competitive neural network with unsupervised learning. It has the strong abilities of self-organization and self-learning. However, the classification accuracy of SOM neural network may decrease when the features of tested object are not obvious. In this paper, the particle swarm optimization (PSO) algorithm is used to optimize the weight values of SOM network. Three indexes, i.e., intra-class density, standard deviation and sample difference, are used to judge the weight value, which can improve the classification accuracy of the SOM network. PSO–SOM network is applied to the detection of series arc fault in electrical circuits and compared with conventional SOM network and learning vector quantization (LVQ) network. The detection accuracy of the PSO–SOM network is 95%, which is higher than conventional SOM network and LVQ network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.