Carcass and meat quality traits are economically important in pigs. In this study, 17 carcass composition traits and 23 meat quality traits were recorded in 1028 F(2) animals from a White Duroc x Erhualian resource population. All pigs in this experimental population were genotyped for 194 informative markers covering the entire porcine genome. Seventy-seven genome-wide significant quantitative trait loci (QTL) for carcass traits and 68 for meat quality were mapped to 34 genomic regions. These results not only confirmed many previously reported QTL but also revealed novel regions associated with the measured traits. For carcass traits, the most prominent QTL was identified for carcass length and head weight at 57 cM on SSC7, which explained up to 50% of the phenotypic variance and had a 95% confidence interval of only 3 cM. Moreover, QTL for kidney and spleen weight and lengths of cervical vertebrae were reported for the first time in pigs. For meat quality traits, two significant QTL on SSC5 and X were identified for both intramuscular fat content and marbling score in the longissimus muscle, while three significant QTL on SSC1 and SSC9 were found exclusively for IMF. Both LM and the semimembranous muscle showed common QTL for colour score on SSC4, 5, 7, 8, 13 and X and discordant QTL on other chromosomes. White Duroc alleles at a majority of QTL detected were favourable for carcass composition, while favourable QTL alleles for meat quality originated from both White Duroc and Erhualian.
The contradiction between “high yielding” and “early maturing” hampers further improvement of annual rice yield. Here we report the positional cloning of a major maturity duration regulatory gene,Early flowering-completely dominant(Ef-cd), and demonstrate that natural variation inEf-cdcould be used to overcome the above contradictory. TheEf-cdlocus gives rise to a long noncoding RNA (lncRNA) antisense transcript overlapping theOsSOC1gene.Ef-cdlncRNA expression positively correlates with the expression ofOsSOC1and H3K36me3 deposition. Field test comparisons of early maturingEf-cdnear-isogenic lines with their wild types as well as of the derivative early maturing hybrids with their wild-type hybrids conducted under different latitudes determined that the early maturingEf-cdallele shortens maturity duration (ranging from 7 to 20 d) without a concomitant yield penalty.Ef-cdfacilitates nitrogen utilization and also improves the photosynthesis rate. Analysis of 1,439 elite hybrid rice varieties revealed that the 16 homozygotes and 299 heterozygotes possessingEf-cdmatured significantly earlier. Therefore,Ef-cdcould be a vital contributor of elite early maturing hybrid varieties in balancing grain yield with maturity duration.
The wild progenitor species (Oryza rufipogon) of Asian cultivated rice (O. sativa L.) is located in Dongxiang county, China which is considered its the northernmost range worldwide. Nine ex situ and three in situ populations of the Dongxiang wild rice (DXWR) and four groups of modern cultivars were genotyped using 21 SSR markers for study of population structure, conservation efficiency and genetic relationship. We demonstrated that the ex situ conservation of the DXWR failed to maintain the genetic identity and reduced genetic diversity. Therefore, in situ conservation is absolutely necessary to maintain the genetic identity, diversity and heterozygosity. Also, in situ conservation is urgently needed because natural populations in DXWR have decreased from nine to three at present due to farming activity and urban expansion. In DXWR, the three surviving in situ populations had greater expected heterozygosity than any cultivated rice, and were genetically closer to japonica than either the male-sterile maintainer or restorer lines, or indica. Japonica has the lowest genetic diversity of cultivated rice. As a result, DXWR is a rich gene pool and is especially valuable for genetic improvement of japonica rice because these O. rufipogon accessions are most closely related to the japonica as compared to O. rufipogon collected anywhere else in the world.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.