Phospholipase C (PLC) is a membrane-associated enzyme that regulates several cellular behaviors including cell motility, growth, transformation and differentiation. PLC is involved in cancer migration, invasion and drug resistance. However, the expression status and prognostic role of PLCB4 in acute myeloid leukemia (AML) remain unclear. In the present study, the complete clinical and mRNA expression data of 285 pediatric patients with de novo AML were obtained from the Therapeutically Available Research to Generate Effective Treatments database. The association between PLCB4 expression and clinical and molecular features was explored. The expression of PLCB4 was significantly higher in patients with AML who relapsed compared with those with long-term complete remission. Patients with PLCB4 upregulation had significantly lower overall survival (OS) and event free survival (EFS) rate compared with those with low PLCB4 expression. Multivariate Cox's regression analyses demonstrated that high PLCB4 expression was an independent risk factor of adverse OS (P<0.01; HR, 2.081) and EFS (P<0.01; HR, 2.130). Following stratification analysis according to transplant status in cases of first complete remission, the patients with high expression of PLCB4 had significantly lower OS and EFS rate in the chemotherapy group, but not the stem cell transplant group. Furthermore, PLCB4-associated genes were identified using Spearman's rank correlation analysis. KEGG pathway analysis revealed that PLCB4 and its associated genes were mainly involved in three potential pathways, including the Rap1 signaling pathway. Overall, the findings of the present study suggest that increased PLCB4 expression is associated with poor clinical outcome in pediatric patients with AML, and thus may represent a potential prognostic biomarker and therapeutic target for AML.
Acute myeloid leukemia (AML) has a high rate of treatment failure due to increased prevalence of therapy resistance. Mesenchymal stem cells (MSCs) in the leukemia microenvironment contribute to chemoresistance in AML, but the specific mechanism remains unclear. The critical role of the epithelial-mesenchymal transition (EMT)-like profile in AML chemoresistance has been gradually recognized. However, there is no research to suggest that the AML-derived bone marrow mesenchymal stem cells
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.